一种确定系统诊断主成分分析模型的新方法

A. Benaicha, G. Mourot, Mohamed Guerfel, K. BenOthman, J. Ragot
{"title":"一种确定系统诊断主成分分析模型的新方法","authors":"A. Benaicha, G. Mourot, Mohamed Guerfel, K. BenOthman, J. Ragot","doi":"10.1109/MED.2010.5547762","DOIUrl":null,"url":null,"abstract":"In this paper, a new method is proposed to determine the structure of PCA models for system diagnosis. This method based on the principle of variable reconstruction determines PCA models in order to optimize detection and isolation of simple and multiple faults affecting redundant or non redundant variables. This new method has been validated by a simulation example of a nonlinear system.","PeriodicalId":149864,"journal":{"name":"18th Mediterranean Conference on Control and Automation, MED'10","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A new method for determining PCA models for system diagnosis\",\"authors\":\"A. Benaicha, G. Mourot, Mohamed Guerfel, K. BenOthman, J. Ragot\",\"doi\":\"10.1109/MED.2010.5547762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new method is proposed to determine the structure of PCA models for system diagnosis. This method based on the principle of variable reconstruction determines PCA models in order to optimize detection and isolation of simple and multiple faults affecting redundant or non redundant variables. This new method has been validated by a simulation example of a nonlinear system.\",\"PeriodicalId\":149864,\"journal\":{\"name\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2010.5547762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Mediterranean Conference on Control and Automation, MED'10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2010.5547762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种确定系统诊断用主成分分析模型结构的新方法。该方法基于变量重构原理确定主成分分析模型,以优化对影响冗余或非冗余变量的简单和多重故障的检测和隔离。通过一个非线性系统的仿真实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for determining PCA models for system diagnosis
In this paper, a new method is proposed to determine the structure of PCA models for system diagnosis. This method based on the principle of variable reconstruction determines PCA models in order to optimize detection and isolation of simple and multiple faults affecting redundant or non redundant variables. This new method has been validated by a simulation example of a nonlinear system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信