{"title":"关于高阶下推系统的表达能力","authors":"P. Parys","doi":"10.23638/LMCS-16(3:11)2020","DOIUrl":null,"url":null,"abstract":"We show that deterministic collapsible pushdown automata of second order can recognize a language that is not recognizable by any deterministic higher-order pushdown automaton (without collapse) of any order. This implies that there exists a tree generated by a second order collapsible pushdown system (equivalently, by a recursion scheme of second order) that is not generated by any deterministic higher-order pushdown system (without collapse) of any order (equivalently, by any safe recursion scheme of any order). As a side effect, we present a pumping lemma for deterministic higher-order pushdown automata, which potentially can be useful for other applications.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Expressive Power of Higher-Order Pushdown Systems\",\"authors\":\"P. Parys\",\"doi\":\"10.23638/LMCS-16(3:11)2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that deterministic collapsible pushdown automata of second order can recognize a language that is not recognizable by any deterministic higher-order pushdown automaton (without collapse) of any order. This implies that there exists a tree generated by a second order collapsible pushdown system (equivalently, by a recursion scheme of second order) that is not generated by any deterministic higher-order pushdown system (without collapse) of any order (equivalently, by any safe recursion scheme of any order). As a side effect, we present a pumping lemma for deterministic higher-order pushdown automata, which potentially can be useful for other applications.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23638/LMCS-16(3:11)2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23638/LMCS-16(3:11)2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Expressive Power of Higher-Order Pushdown Systems
We show that deterministic collapsible pushdown automata of second order can recognize a language that is not recognizable by any deterministic higher-order pushdown automaton (without collapse) of any order. This implies that there exists a tree generated by a second order collapsible pushdown system (equivalently, by a recursion scheme of second order) that is not generated by any deterministic higher-order pushdown system (without collapse) of any order (equivalently, by any safe recursion scheme of any order). As a side effect, we present a pumping lemma for deterministic higher-order pushdown automata, which potentially can be useful for other applications.