M. Sagardia, T. Hulin, K. Hertkorn, Philipp Kremer, Simon Schätzle
{"title":"大型多目标环境下具有触觉反馈的双手虚拟装配训练平台","authors":"M. Sagardia, T. Hulin, K. Hertkorn, Philipp Kremer, Simon Schätzle","doi":"10.1145/2993369.2993386","DOIUrl":null,"url":null,"abstract":"We present a virtual reality platform which addresses and integrates some of the currently challenging research topics in the field of virtual assembly: realistic and practical scenarios with several complex geometries, bimanual six-DoF haptic interaction for hands and arms, and intuitive navigation in large workspaces. We put an especial focus on our collision computation framework, which is able to display stiff and stable forces in 1 kHz using a combination of penalty- and constraint-based haptic rendering methods. Interaction with multiple arbitrary geometries is supported in realtime simulations, as well as several interfaces, allowing for collaborative training experiences. Performance results for an exemplary car assembly sequence which show the readiness of the system are provided.","PeriodicalId":396801,"journal":{"name":"Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A platform for bimanual virtual assembly training with haptic feedback in large multi-object environments\",\"authors\":\"M. Sagardia, T. Hulin, K. Hertkorn, Philipp Kremer, Simon Schätzle\",\"doi\":\"10.1145/2993369.2993386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a virtual reality platform which addresses and integrates some of the currently challenging research topics in the field of virtual assembly: realistic and practical scenarios with several complex geometries, bimanual six-DoF haptic interaction for hands and arms, and intuitive navigation in large workspaces. We put an especial focus on our collision computation framework, which is able to display stiff and stable forces in 1 kHz using a combination of penalty- and constraint-based haptic rendering methods. Interaction with multiple arbitrary geometries is supported in realtime simulations, as well as several interfaces, allowing for collaborative training experiences. Performance results for an exemplary car assembly sequence which show the readiness of the system are provided.\",\"PeriodicalId\":396801,\"journal\":{\"name\":\"Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2993369.2993386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993369.2993386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A platform for bimanual virtual assembly training with haptic feedback in large multi-object environments
We present a virtual reality platform which addresses and integrates some of the currently challenging research topics in the field of virtual assembly: realistic and practical scenarios with several complex geometries, bimanual six-DoF haptic interaction for hands and arms, and intuitive navigation in large workspaces. We put an especial focus on our collision computation framework, which is able to display stiff and stable forces in 1 kHz using a combination of penalty- and constraint-based haptic rendering methods. Interaction with multiple arbitrary geometries is supported in realtime simulations, as well as several interfaces, allowing for collaborative training experiences. Performance results for an exemplary car assembly sequence which show the readiness of the system are provided.