关于充分正则Gröbner基的二元多项式的快速约简

J. Hoeven, Robin Larrieu
{"title":"关于充分正则Gröbner基的二元多项式的快速约简","authors":"J. Hoeven, Robin Larrieu","doi":"10.1145/3208976.3209003","DOIUrl":null,"url":null,"abstract":"Let G be the reduced Grö bner basis of a zero-dimensional ideal I ⊆ K[X, Y] of bivariate polynomials over an effective field K. Modulo suitable regularity assumptions on G and suitable precomputations as a function of G , we prove the existence of a quasi-optimal algorithm for the reduction of polynomials in K [X, Y] with respect to G . Applications include fast algorithms for multiplication in the quotient algebra A=K[X, Y] / I and for conversions due to changes of the term ordering.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fast Reduction of Bivariate Polynomials with Respect to Sufficiently Regular Gröbner Bases\",\"authors\":\"J. Hoeven, Robin Larrieu\",\"doi\":\"10.1145/3208976.3209003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be the reduced Grö bner basis of a zero-dimensional ideal I ⊆ K[X, Y] of bivariate polynomials over an effective field K. Modulo suitable regularity assumptions on G and suitable precomputations as a function of G , we prove the existence of a quasi-optimal algorithm for the reduction of polynomials in K [X, Y] with respect to G . Applications include fast algorithms for multiplication in the quotient algebra A=K[X, Y] / I and for conversions due to changes of the term ordering.\",\"PeriodicalId\":105762,\"journal\":{\"name\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208976.3209003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

设G为有效域K上二元多项式的零维理想I≤K[X, Y]的约简Grö本基,取G上的适宜正则性假设和适宜的预计算为G的函数,证明了K[X, Y]中多项式约简于G的拟最优算法的存在性。应用包括商代数A=K[X, Y] / I中的快速乘法算法和由于项顺序变化而引起的转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Reduction of Bivariate Polynomials with Respect to Sufficiently Regular Gröbner Bases
Let G be the reduced Grö bner basis of a zero-dimensional ideal I ⊆ K[X, Y] of bivariate polynomials over an effective field K. Modulo suitable regularity assumptions on G and suitable precomputations as a function of G , we prove the existence of a quasi-optimal algorithm for the reduction of polynomials in K [X, Y] with respect to G . Applications include fast algorithms for multiplication in the quotient algebra A=K[X, Y] / I and for conversions due to changes of the term ordering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信