{"title":"等变代数K -空间理论的不动点","authors":"Bernard Badzioch, Wojciech Dorabiała","doi":"10.1090/PROC/13584","DOIUrl":null,"url":null,"abstract":"In a recent work Malkiewich and Merling proposed a definition of the equivariant $K$-theory of spaces for spaces equipped with an action of a finite group. We show that the fixed points of this spectrum admit a tom Dieck-type splitting. We also show that this splitting is compatible with the splitting of the equivariant suspension spectrum. The first of these results has been obtained independently by John Rognes.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fixed points of the equivariant algebraic $K$-theory of spaces\",\"authors\":\"Bernard Badzioch, Wojciech Dorabiała\",\"doi\":\"10.1090/PROC/13584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a recent work Malkiewich and Merling proposed a definition of the equivariant $K$-theory of spaces for spaces equipped with an action of a finite group. We show that the fixed points of this spectrum admit a tom Dieck-type splitting. We also show that this splitting is compatible with the splitting of the equivariant suspension spectrum. The first of these results has been obtained independently by John Rognes.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PROC/13584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/13584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fixed points of the equivariant algebraic $K$-theory of spaces
In a recent work Malkiewich and Merling proposed a definition of the equivariant $K$-theory of spaces for spaces equipped with an action of a finite group. We show that the fixed points of this spectrum admit a tom Dieck-type splitting. We also show that this splitting is compatible with the splitting of the equivariant suspension spectrum. The first of these results has been obtained independently by John Rognes.