基于会话进度预测的上下文感知视频推荐

Gang Wu, Viswanathan Swaminathan, Saayan Mitra, Ratnesh Kumar
{"title":"基于会话进度预测的上下文感知视频推荐","authors":"Gang Wu, Viswanathan Swaminathan, Saayan Mitra, Ratnesh Kumar","doi":"10.1109/ICME.2017.8019458","DOIUrl":null,"url":null,"abstract":"In the analysis of digital content consumption, session progress provides a good alternative to using manual ratings for measuring user engagement. A good prediction of session progress is useful for optimizing and personalizing the end-user experience. Most prevalent methods of predicting session progress are based on matrix completion and only consider the interaction among users and videos, while the associated contextual information is usually not used. In this paper, we present our approach for video recommendation, based on session progress prediction and incorporating the context. We test our approach on real-world session progress data, and observe considerable improvement in prediction accuracy achieved by incorporating selected context. Our experiments also show that proper context selection and the number of observed sessions for users are two key factors affecting the prediction accuracy.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Context-aware video recommendation based on session progress prediction\",\"authors\":\"Gang Wu, Viswanathan Swaminathan, Saayan Mitra, Ratnesh Kumar\",\"doi\":\"10.1109/ICME.2017.8019458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the analysis of digital content consumption, session progress provides a good alternative to using manual ratings for measuring user engagement. A good prediction of session progress is useful for optimizing and personalizing the end-user experience. Most prevalent methods of predicting session progress are based on matrix completion and only consider the interaction among users and videos, while the associated contextual information is usually not used. In this paper, we present our approach for video recommendation, based on session progress prediction and incorporating the context. We test our approach on real-world session progress data, and observe considerable improvement in prediction accuracy achieved by incorporating selected context. Our experiments also show that proper context selection and the number of observed sessions for users are two key factors affecting the prediction accuracy.\",\"PeriodicalId\":330977,\"journal\":{\"name\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2017.8019458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在分析数字内容消费时,会话进度提供了一个很好的替代方法,可以用来衡量用户粘性。良好的会话进度预测有助于优化和个性化最终用户体验。最流行的预测会话进度的方法是基于矩阵完成,只考虑用户和视频之间的交互,而通常不使用相关的上下文信息。在本文中,我们提出了一种基于会话进度预测并结合上下文的视频推荐方法。我们在真实世界的会话进度数据上测试了我们的方法,并观察到通过结合选定的上下文,预测精度得到了相当大的提高。我们的实验还表明,适当的上下文选择和用户观察会话的数量是影响预测准确性的两个关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-aware video recommendation based on session progress prediction
In the analysis of digital content consumption, session progress provides a good alternative to using manual ratings for measuring user engagement. A good prediction of session progress is useful for optimizing and personalizing the end-user experience. Most prevalent methods of predicting session progress are based on matrix completion and only consider the interaction among users and videos, while the associated contextual information is usually not used. In this paper, we present our approach for video recommendation, based on session progress prediction and incorporating the context. We test our approach on real-world session progress data, and observe considerable improvement in prediction accuracy achieved by incorporating selected context. Our experiments also show that proper context selection and the number of observed sessions for users are two key factors affecting the prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信