基于稀疏几何展开的旋转流形图像对齐

E. Kokiopoulou, P. Frossard
{"title":"基于稀疏几何展开的旋转流形图像对齐","authors":"E. Kokiopoulou, P. Frossard","doi":"10.1109/MMSP.2007.4412850","DOIUrl":null,"url":null,"abstract":"In this paper we discuss the problem of alignment of patterns under arbitrary rotation. When a generic image pattern is geometrically transformed, it typically spans a (possibly nonlinear) manifold in a high dimensional space. When the pattern of interest is given by a sparse approximation over a structured dictionary of geometric atoms, we show that the rotation manifold can be expressed analytically as a function of the transformation parameters. At the same time, its high order derivatives are also given in a closed form when the pattern is represented as a sparse linear combination of a few differentiable basis functions. In this framework, the alignment problem is formulated as the minimization of the distance between the reference pattern and the manifold, which boils down to a nonlinear least squares optimization problem. We propose to solve this problem by a Newton-type method, whose solution is facilitated by the analytical expressions of the manifold derivatives. We further derive a global optimization heuristic algorithm based on Newton, and provide sufficient conditions for computing the global minimizer. Experimental results demonstrate the effectiveness of the proposed methodology for image alignment and rotation invariant pattern recognition.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image alignment with rotation manifolds built on sparse geometric expansions\",\"authors\":\"E. Kokiopoulou, P. Frossard\",\"doi\":\"10.1109/MMSP.2007.4412850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss the problem of alignment of patterns under arbitrary rotation. When a generic image pattern is geometrically transformed, it typically spans a (possibly nonlinear) manifold in a high dimensional space. When the pattern of interest is given by a sparse approximation over a structured dictionary of geometric atoms, we show that the rotation manifold can be expressed analytically as a function of the transformation parameters. At the same time, its high order derivatives are also given in a closed form when the pattern is represented as a sparse linear combination of a few differentiable basis functions. In this framework, the alignment problem is formulated as the minimization of the distance between the reference pattern and the manifold, which boils down to a nonlinear least squares optimization problem. We propose to solve this problem by a Newton-type method, whose solution is facilitated by the analytical expressions of the manifold derivatives. We further derive a global optimization heuristic algorithm based on Newton, and provide sufficient conditions for computing the global minimizer. Experimental results demonstrate the effectiveness of the proposed methodology for image alignment and rotation invariant pattern recognition.\",\"PeriodicalId\":225295,\"journal\":{\"name\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2007.4412850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了任意旋转条件下的图形对齐问题。当通用图像模式进行几何变换时,它通常在高维空间中跨越一个(可能是非线性的)流形。当感兴趣的模式由几何原子的结构化字典上的稀疏逼近给出时,我们证明了旋转流形可以解析地表示为变换参数的函数。同时,当模式被表示为几个可微基函数的稀疏线性组合时,其高阶导数也以封闭形式给出。在这个框架中,对准问题被表述为参考图案和流形之间距离的最小化,这可以归结为一个非线性最小二乘优化问题。我们提出用牛顿型方法来解决这个问题,它的解是由流形导数的解析表达式所方便的。进一步推导了一种基于牛顿的全局优化启发式算法,并给出了计算全局最小值的充分条件。实验结果证明了该方法在图像对齐和旋转不变模式识别中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image alignment with rotation manifolds built on sparse geometric expansions
In this paper we discuss the problem of alignment of patterns under arbitrary rotation. When a generic image pattern is geometrically transformed, it typically spans a (possibly nonlinear) manifold in a high dimensional space. When the pattern of interest is given by a sparse approximation over a structured dictionary of geometric atoms, we show that the rotation manifold can be expressed analytically as a function of the transformation parameters. At the same time, its high order derivatives are also given in a closed form when the pattern is represented as a sparse linear combination of a few differentiable basis functions. In this framework, the alignment problem is formulated as the minimization of the distance between the reference pattern and the manifold, which boils down to a nonlinear least squares optimization problem. We propose to solve this problem by a Newton-type method, whose solution is facilitated by the analytical expressions of the manifold derivatives. We further derive a global optimization heuristic algorithm based on Newton, and provide sufficient conditions for computing the global minimizer. Experimental results demonstrate the effectiveness of the proposed methodology for image alignment and rotation invariant pattern recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信