Trassandra Jewelle Ipapo, Charlize Del Rosario, R. Alampay, P. Abu
{"title":"用变分自编码器对面部运动特征进行过采样以估计面部功能障碍的严重程度","authors":"Trassandra Jewelle Ipapo, Charlize Del Rosario, R. Alampay, P. Abu","doi":"10.1109/CGIP58526.2023.00013","DOIUrl":null,"url":null,"abstract":"Class imbalance, which negatively affects classification model performance, is a common problem with machine learning. Various oversampling methods have been developed as potential solutions to compensate for imbalanced data. SMOTE is one of the more common methods employed. However, deep generative models such as the variational autoencoder are showing promise as alternatives to traditional oversampling methods. This study investigated the potential of variational autoencoders in learning the distribution of the minority class and producing new observations of facial motion features extracted from an imbalanced medical dataset as well as to see the effects of oversampling before and after the train-test split. The effectiveness of the variational autoencoder was compared to SMOTE in increasing ordinal classification performance across the metrics of accuracy, accuracy±1, inter-rater reliability, specificity, and sensitivity with no oversampling serving as the baseline. The results show that the variational autoencoder has potential as an oversampling method for facial motion features in the context of oro-facial dysfunction estimation. Oversampling prior to the train-test split was also shown to improve classification performance.","PeriodicalId":286064,"journal":{"name":"2023 International Conference on Computer Graphics and Image Processing (CGIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oversampling Facial Motion Features Using the Variational Autoencoder to Estimate Oro-facial Dysfunction Severity\",\"authors\":\"Trassandra Jewelle Ipapo, Charlize Del Rosario, R. Alampay, P. Abu\",\"doi\":\"10.1109/CGIP58526.2023.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Class imbalance, which negatively affects classification model performance, is a common problem with machine learning. Various oversampling methods have been developed as potential solutions to compensate for imbalanced data. SMOTE is one of the more common methods employed. However, deep generative models such as the variational autoencoder are showing promise as alternatives to traditional oversampling methods. This study investigated the potential of variational autoencoders in learning the distribution of the minority class and producing new observations of facial motion features extracted from an imbalanced medical dataset as well as to see the effects of oversampling before and after the train-test split. The effectiveness of the variational autoencoder was compared to SMOTE in increasing ordinal classification performance across the metrics of accuracy, accuracy±1, inter-rater reliability, specificity, and sensitivity with no oversampling serving as the baseline. The results show that the variational autoencoder has potential as an oversampling method for facial motion features in the context of oro-facial dysfunction estimation. Oversampling prior to the train-test split was also shown to improve classification performance.\",\"PeriodicalId\":286064,\"journal\":{\"name\":\"2023 International Conference on Computer Graphics and Image Processing (CGIP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Computer Graphics and Image Processing (CGIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGIP58526.2023.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Computer Graphics and Image Processing (CGIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIP58526.2023.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oversampling Facial Motion Features Using the Variational Autoencoder to Estimate Oro-facial Dysfunction Severity
Class imbalance, which negatively affects classification model performance, is a common problem with machine learning. Various oversampling methods have been developed as potential solutions to compensate for imbalanced data. SMOTE is one of the more common methods employed. However, deep generative models such as the variational autoencoder are showing promise as alternatives to traditional oversampling methods. This study investigated the potential of variational autoencoders in learning the distribution of the minority class and producing new observations of facial motion features extracted from an imbalanced medical dataset as well as to see the effects of oversampling before and after the train-test split. The effectiveness of the variational autoencoder was compared to SMOTE in increasing ordinal classification performance across the metrics of accuracy, accuracy±1, inter-rater reliability, specificity, and sensitivity with no oversampling serving as the baseline. The results show that the variational autoencoder has potential as an oversampling method for facial motion features in the context of oro-facial dysfunction estimation. Oversampling prior to the train-test split was also shown to improve classification performance.