目标导向采样的基于采样的路径规划

Gitae Kang, Y. Kim, W. You, Young Hun Lee, H. Oh, H. Moon, Hyoukryeol Choi
{"title":"目标导向采样的基于采样的路径规划","authors":"Gitae Kang, Y. Kim, W. You, Young Hun Lee, H. Oh, H. Moon, Hyoukryeol Choi","doi":"10.1109/AIM.2016.7576947","DOIUrl":null,"url":null,"abstract":"Path planning in complicated environments is a time consuming and computationally expensive task. Especially in high-dimensional configuration spaces with complex obstacles, searching for a proper path while avoiding collisions is still challenging. This paper presents an improved sampling-based algorithm, called the Goal Oriented sampling method (GO sampling) that quickly generates an initial solution overcoming these problems. GO sampling extends the sampling method of the Rapidly-exploring Random Tree (RRT) algorithm. GO sampling is able to identify the initial solution in a shorter time than that of the RRT algorithm and shows significant improvement in computational efficiency. The algorithm is evaluated with simulations in 2D and 3D space.","PeriodicalId":154457,"journal":{"name":"2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Sampling-based path planning with goal oriented sampling\",\"authors\":\"Gitae Kang, Y. Kim, W. You, Young Hun Lee, H. Oh, H. Moon, Hyoukryeol Choi\",\"doi\":\"10.1109/AIM.2016.7576947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Path planning in complicated environments is a time consuming and computationally expensive task. Especially in high-dimensional configuration spaces with complex obstacles, searching for a proper path while avoiding collisions is still challenging. This paper presents an improved sampling-based algorithm, called the Goal Oriented sampling method (GO sampling) that quickly generates an initial solution overcoming these problems. GO sampling extends the sampling method of the Rapidly-exploring Random Tree (RRT) algorithm. GO sampling is able to identify the initial solution in a shorter time than that of the RRT algorithm and shows significant improvement in computational efficiency. The algorithm is evaluated with simulations in 2D and 3D space.\",\"PeriodicalId\":154457,\"journal\":{\"name\":\"2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIM.2016.7576947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIM.2016.7576947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

复杂环境下的路径规划是一项耗时且计算量大的任务。特别是在具有复杂障碍物的高维构型空间中,在避免碰撞的同时寻找合适的路径仍然是一个挑战。本文提出了一种改进的基于采样的算法,称为目标导向采样方法(GO采样),它可以快速生成克服这些问题的初始解。GO采样扩展了快速探索随机树(RRT)算法的采样方法。与RRT算法相比,GO采样能够在更短的时间内识别初始解,并且在计算效率上有显著提高。通过二维和三维仿真对该算法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampling-based path planning with goal oriented sampling
Path planning in complicated environments is a time consuming and computationally expensive task. Especially in high-dimensional configuration spaces with complex obstacles, searching for a proper path while avoiding collisions is still challenging. This paper presents an improved sampling-based algorithm, called the Goal Oriented sampling method (GO sampling) that quickly generates an initial solution overcoming these problems. GO sampling extends the sampling method of the Rapidly-exploring Random Tree (RRT) algorithm. GO sampling is able to identify the initial solution in a shorter time than that of the RRT algorithm and shows significant improvement in computational efficiency. The algorithm is evaluated with simulations in 2D and 3D space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信