属性图挖掘与匹配:软属性模式定义与提取的尝试

Quanshi Zhang, Xuan Song, Xiaowei Shao, Huijing Zhao, R. Shibasaki
{"title":"属性图挖掘与匹配:软属性模式定义与提取的尝试","authors":"Quanshi Zhang, Xuan Song, Xiaowei Shao, Huijing Zhao, R. Shibasaki","doi":"10.1109/CVPR.2014.181","DOIUrl":null,"url":null,"abstract":"Graph matching and graph mining are two typical areas in artificial intelligence. In this paper, we define the soft attributed pattern (SAP) to describe the common subgraph pattern among a set of attributed relational graphs (ARGs), considering both the graphical structure and graph attributes. We propose a direct solution to extract the SAP with the maximal graph size without node enumeration. Given an initial graph template and a number of ARGs, we modify the graph template into the maximal SAP among the ARGs in an unsupervised fashion. The maximal SAP extraction is equivalent to learning a graphical model (i.e. an object model) from large ARGs (i.e. cluttered RGB/RGB-D images) for graph matching, which extends the concept of \"unsupervised learning for graph matching.\" Furthermore, this study can be also regarded as the first known approach to formulating \"maximal graph mining\" in the graph domain of ARGs. Our method exhibits superior performance on RGB and RGB-D images.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Attributed Graph Mining and Matching: An Attempt to Define and Extract Soft Attributed Patterns\",\"authors\":\"Quanshi Zhang, Xuan Song, Xiaowei Shao, Huijing Zhao, R. Shibasaki\",\"doi\":\"10.1109/CVPR.2014.181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph matching and graph mining are two typical areas in artificial intelligence. In this paper, we define the soft attributed pattern (SAP) to describe the common subgraph pattern among a set of attributed relational graphs (ARGs), considering both the graphical structure and graph attributes. We propose a direct solution to extract the SAP with the maximal graph size without node enumeration. Given an initial graph template and a number of ARGs, we modify the graph template into the maximal SAP among the ARGs in an unsupervised fashion. The maximal SAP extraction is equivalent to learning a graphical model (i.e. an object model) from large ARGs (i.e. cluttered RGB/RGB-D images) for graph matching, which extends the concept of \\\"unsupervised learning for graph matching.\\\" Furthermore, this study can be also regarded as the first known approach to formulating \\\"maximal graph mining\\\" in the graph domain of ARGs. Our method exhibits superior performance on RGB and RGB-D images.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

图匹配和图挖掘是人工智能研究的两个典型领域。本文定义了软属性模式(SAP)来描述一组属性关系图(arg)之间的公共子图模式,同时考虑了图的结构和属性。我们提出了一种无需节点枚举的直接提取图大小最大的SAP的解决方案。给定初始图模板和一些arg,我们以无监督的方式将图模板修改为arg之间的最大SAP。最大SAP提取相当于从大型arg(即杂乱的RGB/RGB- d图像)中学习图形模型(即对象模型)进行图形匹配,这扩展了“无监督学习进行图形匹配”的概念。此外,该研究也可以被认为是已知的第一个在ARGs图域中制定“最大图挖掘”的方法。我们的方法在RGB和RGB- d图像上表现出优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attributed Graph Mining and Matching: An Attempt to Define and Extract Soft Attributed Patterns
Graph matching and graph mining are two typical areas in artificial intelligence. In this paper, we define the soft attributed pattern (SAP) to describe the common subgraph pattern among a set of attributed relational graphs (ARGs), considering both the graphical structure and graph attributes. We propose a direct solution to extract the SAP with the maximal graph size without node enumeration. Given an initial graph template and a number of ARGs, we modify the graph template into the maximal SAP among the ARGs in an unsupervised fashion. The maximal SAP extraction is equivalent to learning a graphical model (i.e. an object model) from large ARGs (i.e. cluttered RGB/RGB-D images) for graph matching, which extends the concept of "unsupervised learning for graph matching." Furthermore, this study can be also regarded as the first known approach to formulating "maximal graph mining" in the graph domain of ARGs. Our method exhibits superior performance on RGB and RGB-D images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信