脑电源定位的可控时空平滑约束

Damon E. Hyde, S. Warfield
{"title":"脑电源定位的可控时空平滑约束","authors":"Damon E. Hyde, S. Warfield","doi":"10.1109/ISBI.2010.5490114","DOIUrl":null,"url":null,"abstract":"We present a new spatio-temporal regularization approach for EEG source localization. Using separable spatial and temporal smoothing constraints, we are able to construct a computationally feasible maximum a posteriori (MAP) solution. The smoothing is achieved using a Helmholtz-type functional which allows explicit control over the distance at which correlation between voxels is present. Temporal variation in signal to noise ratio is incorporated as a column-wise of the temporal regularization matrix. Using both simulated and experimental EEG data, we show that this approach allows for improvements in both the spatial and temporal accuracy of the resulting solutions.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"296 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable spatio-temporal smoothness constraints for EEG source localization\",\"authors\":\"Damon E. Hyde, S. Warfield\",\"doi\":\"10.1109/ISBI.2010.5490114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new spatio-temporal regularization approach for EEG source localization. Using separable spatial and temporal smoothing constraints, we are able to construct a computationally feasible maximum a posteriori (MAP) solution. The smoothing is achieved using a Helmholtz-type functional which allows explicit control over the distance at which correlation between voxels is present. Temporal variation in signal to noise ratio is incorporated as a column-wise of the temporal regularization matrix. Using both simulated and experimental EEG data, we show that this approach allows for improvements in both the spatial and temporal accuracy of the resulting solutions.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"296 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的脑电信号源定位的时空正则化方法。使用可分离的空间和时间平滑约束,我们能够构建一个计算可行的最大后验(MAP)解决方案。平滑是使用亥姆霍兹型函数实现的,该函数允许明确控制体素之间存在相关性的距离。信噪比的时间变化作为时间正则化矩阵的一列。使用模拟和实验EEG数据,我们表明这种方法可以提高所得到的解决方案的空间和时间精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controllable spatio-temporal smoothness constraints for EEG source localization
We present a new spatio-temporal regularization approach for EEG source localization. Using separable spatial and temporal smoothing constraints, we are able to construct a computationally feasible maximum a posteriori (MAP) solution. The smoothing is achieved using a Helmholtz-type functional which allows explicit control over the distance at which correlation between voxels is present. Temporal variation in signal to noise ratio is incorporated as a column-wise of the temporal regularization matrix. Using both simulated and experimental EEG data, we show that this approach allows for improvements in both the spatial and temporal accuracy of the resulting solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信