热工程专业硕士研究生热物理实验教学

A. Tarasov, O. Lytvynenko, Irina Myhaylova, S. Naumenko
{"title":"热工程专业硕士研究生热物理实验教学","authors":"A. Tarasov, O. Lytvynenko, Irina Myhaylova, S. Naumenko","doi":"10.20998/2078-774x.2020.01.03","DOIUrl":null,"url":null,"abstract":"Thermophysical experiments became a very rare phenomenon due to their expensiveness and rather complicated and time-consuming preparation and carrying out. Very often the teachers tend to prefer the computer simulation of these and those technological processes for the in-depth formation of detailed knowledge in students. The reason for such a preference is evident; this approach provides visual aspects and relatively fast attainment of the goal. A negative side of such a choice is that the future specialists are not able to judge the reliability of these and those experimental relationships between the physical parameters of the processes that are used for the machinery design. To remove this drawback of the teaching and learning process, a small-size aerodynamic tunnel was created and the detailed technique for the running of experiment and experimental data processing was elaborated. The length of the working section of this tunnel was equal to 0.5 m. The rectangular cross-section of the tunnel bore was equal to 0.35´0.15 m2. The heat loss was studied at the lower wall of aerodynamic tunnel that was equipped with three heating elements arranged longitudinally to the air stream. The heating elements were the strips made of konstantan with the cross-section of 10´0.11 mm2 and the thermocouples were fixed to the lower surface. A maximum value of the local Reynolds number was Rex < 105, i.e. the laminar boundary layer was actually in progress on the entire surface. When processing the obtained experimental data we took into account radiation heat losses and the heat losses caused by thermal conductivity along heating elements. Nevertheless, heat transfer intensity values turned out to be 3 to 4 times higher in comparison to those of the laminar flow mode. The numerical analysis of the thermal state of the experimental plate enabled the determination of the heat losses that were not taken into account earlier. Hence, we managed to achieve actually full coincidence of the experimental values of the intensity of heat transfer that were derived from a reliable similarity equation. The research done is required for the formation of the competence in students that study for the Master’s degree to get their specialty.","PeriodicalId":416126,"journal":{"name":"NTU \"KhPI\" Bulletin: Power and heat engineering processes and equipment","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Thermophysical Experiment Carried out for the Education of the Students Studying for the Master’s Degree to Get Heat Engineering Specialties\",\"authors\":\"A. Tarasov, O. Lytvynenko, Irina Myhaylova, S. Naumenko\",\"doi\":\"10.20998/2078-774x.2020.01.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermophysical experiments became a very rare phenomenon due to their expensiveness and rather complicated and time-consuming preparation and carrying out. Very often the teachers tend to prefer the computer simulation of these and those technological processes for the in-depth formation of detailed knowledge in students. The reason for such a preference is evident; this approach provides visual aspects and relatively fast attainment of the goal. A negative side of such a choice is that the future specialists are not able to judge the reliability of these and those experimental relationships between the physical parameters of the processes that are used for the machinery design. To remove this drawback of the teaching and learning process, a small-size aerodynamic tunnel was created and the detailed technique for the running of experiment and experimental data processing was elaborated. The length of the working section of this tunnel was equal to 0.5 m. The rectangular cross-section of the tunnel bore was equal to 0.35´0.15 m2. The heat loss was studied at the lower wall of aerodynamic tunnel that was equipped with three heating elements arranged longitudinally to the air stream. The heating elements were the strips made of konstantan with the cross-section of 10´0.11 mm2 and the thermocouples were fixed to the lower surface. A maximum value of the local Reynolds number was Rex < 105, i.e. the laminar boundary layer was actually in progress on the entire surface. When processing the obtained experimental data we took into account radiation heat losses and the heat losses caused by thermal conductivity along heating elements. Nevertheless, heat transfer intensity values turned out to be 3 to 4 times higher in comparison to those of the laminar flow mode. The numerical analysis of the thermal state of the experimental plate enabled the determination of the heat losses that were not taken into account earlier. Hence, we managed to achieve actually full coincidence of the experimental values of the intensity of heat transfer that were derived from a reliable similarity equation. The research done is required for the formation of the competence in students that study for the Master’s degree to get their specialty.\",\"PeriodicalId\":416126,\"journal\":{\"name\":\"NTU \\\"KhPI\\\" Bulletin: Power and heat engineering processes and equipment\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NTU \\\"KhPI\\\" Bulletin: Power and heat engineering processes and equipment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2078-774x.2020.01.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NTU \"KhPI\" Bulletin: Power and heat engineering processes and equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2078-774x.2020.01.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

热物理实验由于其昂贵的费用和相当复杂和耗时的准备和实施而成为一种非常罕见的现象。教师往往倾向于用计算机模拟这些和那些技术过程,以便学生深入形成详细的知识。这种偏好的原因是显而易见的;这种方法提供了视觉方面和相对较快的目标实现。这种选择的消极一面是,未来的专家无法判断用于机械设计的过程的物理参数之间的这些和那些实验关系的可靠性。为了消除教学过程中的这一缺陷,建立了一个小型气动隧道,并阐述了实验运行和实验数据处理的详细技术。本隧道工作段长度为0.5 m。隧道掘进矩形截面为0.35´0.15 m2。研究了纵向布置三个加热元件的气动隧道下壁的热损失。加热元件为横截面为10´0.11 mm2的康斯坦坦条,热电偶固定在下表面。局部雷诺数最大值为Rex < 105,即层流边界层在整个表面实际处于运动状态。在处理得到的实验数据时,我们考虑了辐射热损失和热导率沿加热元件引起的热损失。然而,换热强度值比层流模式高3 ~ 4倍。通过对实验板热状态的数值分析,可以确定之前没有考虑到的热损失。因此,我们成功地实现了由可靠的相似方程导出的传热强度的实验值的完全重合。为了培养攻读硕士学位的学生的专业能力,所做的研究是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Thermophysical Experiment Carried out for the Education of the Students Studying for the Master’s Degree to Get Heat Engineering Specialties
Thermophysical experiments became a very rare phenomenon due to their expensiveness and rather complicated and time-consuming preparation and carrying out. Very often the teachers tend to prefer the computer simulation of these and those technological processes for the in-depth formation of detailed knowledge in students. The reason for such a preference is evident; this approach provides visual aspects and relatively fast attainment of the goal. A negative side of such a choice is that the future specialists are not able to judge the reliability of these and those experimental relationships between the physical parameters of the processes that are used for the machinery design. To remove this drawback of the teaching and learning process, a small-size aerodynamic tunnel was created and the detailed technique for the running of experiment and experimental data processing was elaborated. The length of the working section of this tunnel was equal to 0.5 m. The rectangular cross-section of the tunnel bore was equal to 0.35´0.15 m2. The heat loss was studied at the lower wall of aerodynamic tunnel that was equipped with three heating elements arranged longitudinally to the air stream. The heating elements were the strips made of konstantan with the cross-section of 10´0.11 mm2 and the thermocouples were fixed to the lower surface. A maximum value of the local Reynolds number was Rex < 105, i.e. the laminar boundary layer was actually in progress on the entire surface. When processing the obtained experimental data we took into account radiation heat losses and the heat losses caused by thermal conductivity along heating elements. Nevertheless, heat transfer intensity values turned out to be 3 to 4 times higher in comparison to those of the laminar flow mode. The numerical analysis of the thermal state of the experimental plate enabled the determination of the heat losses that were not taken into account earlier. Hence, we managed to achieve actually full coincidence of the experimental values of the intensity of heat transfer that were derived from a reliable similarity equation. The research done is required for the formation of the competence in students that study for the Master’s degree to get their specialty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信