下采样指数机制:大输出空间中的差分隐私

Eric Lantz, Kendrick Boyd, David Page
{"title":"下采样指数机制:大输出空间中的差分隐私","authors":"Eric Lantz, Kendrick Boyd, David Page","doi":"10.1145/2808769.2808776","DOIUrl":null,"url":null,"abstract":"In the last several years, differential privacy has become the leading framework for private data analysis. It provides bounds on the amount that a randomized function can change as the result of a modification to one record of a database. This requirement can be satisfied by using the exponential mechanism to perform a weighted choice among the possible alternatives, with better options receiving higher weights. However, in some situations the number of possible outcomes is too large to compute all weights efficiently. We present the subsampled exponential mechanism, which scores only a sample of the outcomes. We show that it still preserves differential privacy, and fulfills a similar accuracy bound. Using a clustering application, we show that the subsampled exponential mechanism outperforms a previously published private algorithm and is comparable to the full exponential mechanism but more scalable.","PeriodicalId":426614,"journal":{"name":"Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security","volume":"303 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Subsampled Exponential Mechanism: Differential Privacy in Large Output Spaces\",\"authors\":\"Eric Lantz, Kendrick Boyd, David Page\",\"doi\":\"10.1145/2808769.2808776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last several years, differential privacy has become the leading framework for private data analysis. It provides bounds on the amount that a randomized function can change as the result of a modification to one record of a database. This requirement can be satisfied by using the exponential mechanism to perform a weighted choice among the possible alternatives, with better options receiving higher weights. However, in some situations the number of possible outcomes is too large to compute all weights efficiently. We present the subsampled exponential mechanism, which scores only a sample of the outcomes. We show that it still preserves differential privacy, and fulfills a similar accuracy bound. Using a clustering application, we show that the subsampled exponential mechanism outperforms a previously published private algorithm and is comparable to the full exponential mechanism but more scalable.\",\"PeriodicalId\":426614,\"journal\":{\"name\":\"Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security\",\"volume\":\"303 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808769.2808776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808769.2808776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在过去的几年里,差分隐私已经成为私有数据分析的主要框架。它提供了随机函数在修改数据库的一条记录时所能改变的量的上限。这一需求可以通过使用指数机制在可能的备选方案中执行加权选择来满足,其中更好的选项获得更高的权重。然而,在某些情况下,可能结果的数量太大,无法有效地计算所有权重。我们提出了次抽样指数机制,它只对结果的一个样本进行评分。我们证明它仍然保留微分隐私,并满足类似的精度界。使用一个聚类应用程序,我们证明了下采样指数机制优于先前发布的私有算法,并且与全指数机制相当,但更具可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subsampled Exponential Mechanism: Differential Privacy in Large Output Spaces
In the last several years, differential privacy has become the leading framework for private data analysis. It provides bounds on the amount that a randomized function can change as the result of a modification to one record of a database. This requirement can be satisfied by using the exponential mechanism to perform a weighted choice among the possible alternatives, with better options receiving higher weights. However, in some situations the number of possible outcomes is too large to compute all weights efficiently. We present the subsampled exponential mechanism, which scores only a sample of the outcomes. We show that it still preserves differential privacy, and fulfills a similar accuracy bound. Using a clustering application, we show that the subsampled exponential mechanism outperforms a previously published private algorithm and is comparable to the full exponential mechanism but more scalable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信