用于分析视频静止图像的MPEG-1超分辨率解码

K. J. Erickson, R. Schultz
{"title":"用于分析视频静止图像的MPEG-1超分辨率解码","authors":"K. J. Erickson, R. Schultz","doi":"10.1109/IAI.2000.839563","DOIUrl":null,"url":null,"abstract":"A digital image sequence coded at low bitrate using a motion-compensated video compression standard should contain little data redundancy. However, the success of a particular super-resolution enhancement algorithm is predicted on super-resolution overlap (i.e., redundancy) of moving objects from frame-to-frame. If an MPEG-1 bitstream is coded at a relatively high bitrate (e.g., a compression ratio of 15:1), enough data redundancy exists within the bitstream to successfully perform super-resolution enhancement within the decoder. Empirical results are presented in which decoded pictures from MPEG-1 bitstreams containing both global scene transformations and independent object notion are integrated to generate Bayesian high-resolution video still (HRVS) images. It is shown that additional spatial details can be extracted by integrating several motion-compensated coded pictures, provided that a large number of subpixel-resolution overlaps-such as those captured by a reconnaissance airplane or surveillance satellite-are present among the original digitized video frames.","PeriodicalId":224112,"journal":{"name":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"MPEG-1 super-resolution decoding for the analysis of video still images\",\"authors\":\"K. J. Erickson, R. Schultz\",\"doi\":\"10.1109/IAI.2000.839563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A digital image sequence coded at low bitrate using a motion-compensated video compression standard should contain little data redundancy. However, the success of a particular super-resolution enhancement algorithm is predicted on super-resolution overlap (i.e., redundancy) of moving objects from frame-to-frame. If an MPEG-1 bitstream is coded at a relatively high bitrate (e.g., a compression ratio of 15:1), enough data redundancy exists within the bitstream to successfully perform super-resolution enhancement within the decoder. Empirical results are presented in which decoded pictures from MPEG-1 bitstreams containing both global scene transformations and independent object notion are integrated to generate Bayesian high-resolution video still (HRVS) images. It is shown that additional spatial details can be extracted by integrating several motion-compensated coded pictures, provided that a large number of subpixel-resolution overlaps-such as those captured by a reconnaissance airplane or surveillance satellite-are present among the original digitized video frames.\",\"PeriodicalId\":224112,\"journal\":{\"name\":\"4th IEEE Southwest Symposium on Image Analysis and Interpretation\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th IEEE Southwest Symposium on Image Analysis and Interpretation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI.2000.839563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2000.839563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

使用运动补偿视频压缩标准以低比特率编码的数字图像序列应该包含很少的数据冗余。然而,一种特定的超分辨率增强算法的成功预测是基于运动物体在帧到帧之间的超分辨率重叠(即冗余)。如果MPEG-1比特流以相对较高的比特率编码(例如,压缩比为15:1),则比特流中存在足够的数据冗余,可以在解码器中成功执行超分辨率增强。本文给出了将包含全局场景变换和独立对象概念的MPEG-1比特流解码图像集成到贝叶斯高分辨率视频静止图像(HRVS)中的经验结果。研究表明,如果在原始数字化视频帧中存在大量亚像素级分辨率的重叠,例如由侦察机或监视卫星捕获的重叠,则可以通过整合几个运动补偿编码图像来提取额外的空间细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MPEG-1 super-resolution decoding for the analysis of video still images
A digital image sequence coded at low bitrate using a motion-compensated video compression standard should contain little data redundancy. However, the success of a particular super-resolution enhancement algorithm is predicted on super-resolution overlap (i.e., redundancy) of moving objects from frame-to-frame. If an MPEG-1 bitstream is coded at a relatively high bitrate (e.g., a compression ratio of 15:1), enough data redundancy exists within the bitstream to successfully perform super-resolution enhancement within the decoder. Empirical results are presented in which decoded pictures from MPEG-1 bitstreams containing both global scene transformations and independent object notion are integrated to generate Bayesian high-resolution video still (HRVS) images. It is shown that additional spatial details can be extracted by integrating several motion-compensated coded pictures, provided that a large number of subpixel-resolution overlaps-such as those captured by a reconnaissance airplane or surveillance satellite-are present among the original digitized video frames.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信