{"title":"自适应气动力驱动和位置控制","authors":"J. Bobrow, F. Jabbari","doi":"10.1109/ACC.1989.4173442","DOIUrl":null,"url":null,"abstract":"In this paper an implementation of an adaptive control law for a pneumatic actuator is presented. Pneumatic actuators are of particular interest for robotic applications because of their large force output per unit weight, and their low cost. Stabilization of a pneumatic actuator is difficult if a high bandwidth closed-loop system is desired. This is because of the compressibility of air, and of the nonlinear characteristics of air flowing through a variable area orifice. Further complications arise from the geometry of the mechanism because the equations of motion are highly nonlinear. The order of the dominant dynamics is shown to vary with the position of the mechanism.","PeriodicalId":383719,"journal":{"name":"1989 American Control Conference","volume":"332 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Adaptive Pneumatic Force Actuation and Position Control\",\"authors\":\"J. Bobrow, F. Jabbari\",\"doi\":\"10.1109/ACC.1989.4173442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an implementation of an adaptive control law for a pneumatic actuator is presented. Pneumatic actuators are of particular interest for robotic applications because of their large force output per unit weight, and their low cost. Stabilization of a pneumatic actuator is difficult if a high bandwidth closed-loop system is desired. This is because of the compressibility of air, and of the nonlinear characteristics of air flowing through a variable area orifice. Further complications arise from the geometry of the mechanism because the equations of motion are highly nonlinear. The order of the dominant dynamics is shown to vary with the position of the mechanism.\",\"PeriodicalId\":383719,\"journal\":{\"name\":\"1989 American Control Conference\",\"volume\":\"332 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1989 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.1989.4173442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1989 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1989.4173442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Pneumatic Force Actuation and Position Control
In this paper an implementation of an adaptive control law for a pneumatic actuator is presented. Pneumatic actuators are of particular interest for robotic applications because of their large force output per unit weight, and their low cost. Stabilization of a pneumatic actuator is difficult if a high bandwidth closed-loop system is desired. This is because of the compressibility of air, and of the nonlinear characteristics of air flowing through a variable area orifice. Further complications arise from the geometry of the mechanism because the equations of motion are highly nonlinear. The order of the dominant dynamics is shown to vary with the position of the mechanism.