用直接代数方法求解哈密顿振幅方程和高阶非线性薛定谔方程

N. Taghizadeh, M. Mirzazadeh
{"title":"用直接代数方法求解哈密顿振幅方程和高阶非线性薛定谔方程","authors":"N. Taghizadeh, M. Mirzazadeh","doi":"10.0000/IJAMC.2013.5.4.573","DOIUrl":null,"url":null,"abstract":"By using the direct algebra method, the traveling wave solutions for the Hamiltonian amplitude equation and the higher-order nonlinear Schr\\\"{o}dinger equation are constructed. The obtained results include complex exponential function solutions, complex traveling solitary wave solutions, complex periodic wave solutions. The power of this manageable method is confirmed.\\\\ The Hamiltonian amplitude equation is an equation which governs certain instabilities of modulated wave trains, with the additional term $-\\epsilon u_{xt}$ overcoming the ill-posedness of the unstable nonlinear Schr\\\"{o}dinger equation. It is a Hamiltonian analogue of the Kuramoto-Sivashinski equation which arises in dissipative systems and is apparently not integrable.\\\\","PeriodicalId":173223,"journal":{"name":"International Journal of Applied Mathematics and Computation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The direct algebra method to the Hamiltonian amplitude equation and the higher-order nonlinear Schr¨odinger equation\",\"authors\":\"N. Taghizadeh, M. Mirzazadeh\",\"doi\":\"10.0000/IJAMC.2013.5.4.573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using the direct algebra method, the traveling wave solutions for the Hamiltonian amplitude equation and the higher-order nonlinear Schr\\\\\\\"{o}dinger equation are constructed. The obtained results include complex exponential function solutions, complex traveling solitary wave solutions, complex periodic wave solutions. The power of this manageable method is confirmed.\\\\\\\\ The Hamiltonian amplitude equation is an equation which governs certain instabilities of modulated wave trains, with the additional term $-\\\\epsilon u_{xt}$ overcoming the ill-posedness of the unstable nonlinear Schr\\\\\\\"{o}dinger equation. It is a Hamiltonian analogue of the Kuramoto-Sivashinski equation which arises in dissipative systems and is apparently not integrable.\\\\\\\\\",\"PeriodicalId\":173223,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computation\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.0000/IJAMC.2013.5.4.573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.0000/IJAMC.2013.5.4.573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用直接代数方法构造了哈密顿振幅方程和高阶非线性Schr\ o}dinger方程的行波解。所得结果包括复指数函数解、复行孤立波解、复周期波解。这种管理方法的威力得到了证实。哈密顿振幅方程是一个控制调制波列的某些不稳定性的方程,它的附加项$- {xt}$克服了不稳定非线性薛定谔方程的病态性。它是耗散系统中出现的Kuramoto-Sivashinski方程的哈密顿模拟,显然是不可积的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The direct algebra method to the Hamiltonian amplitude equation and the higher-order nonlinear Schr¨odinger equation
By using the direct algebra method, the traveling wave solutions for the Hamiltonian amplitude equation and the higher-order nonlinear Schr\"{o}dinger equation are constructed. The obtained results include complex exponential function solutions, complex traveling solitary wave solutions, complex periodic wave solutions. The power of this manageable method is confirmed.\\ The Hamiltonian amplitude equation is an equation which governs certain instabilities of modulated wave trains, with the additional term $-\epsilon u_{xt}$ overcoming the ill-posedness of the unstable nonlinear Schr\"{o}dinger equation. It is a Hamiltonian analogue of the Kuramoto-Sivashinski equation which arises in dissipative systems and is apparently not integrable.\\
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信