检测3D人脸上的动作单元

A. Savran, B. Sankur
{"title":"检测3D人脸上的动作单元","authors":"A. Savran, B. Sankur","doi":"10.1109/SIU.2010.5651330","DOIUrl":null,"url":null,"abstract":"Automatic facial action unit (AU) detection is a research topic that finds many applications in behavioral science and human computer interaction. The AU detection performance in 2D images are maturing but are not yet adequate. In this study, we develop a method to detect AUs in 3D images and show its superiority vis-a-vis 2D. The data modality is 2D curvature map, which is obtained by conformal mapping of 3D surface data. Since performance comparisons are run on 2D data with the same algorithms, any bias that could be induced by 3D modality is precluded. We address also the choice of generative versus discriminative classifiers, and consider 2D-3D fusion.","PeriodicalId":152297,"journal":{"name":"2010 IEEE 18th Signal Processing and Communications Applications Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting action units on 3D faces\",\"authors\":\"A. Savran, B. Sankur\",\"doi\":\"10.1109/SIU.2010.5651330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic facial action unit (AU) detection is a research topic that finds many applications in behavioral science and human computer interaction. The AU detection performance in 2D images are maturing but are not yet adequate. In this study, we develop a method to detect AUs in 3D images and show its superiority vis-a-vis 2D. The data modality is 2D curvature map, which is obtained by conformal mapping of 3D surface data. Since performance comparisons are run on 2D data with the same algorithms, any bias that could be induced by 3D modality is precluded. We address also the choice of generative versus discriminative classifiers, and consider 2D-3D fusion.\",\"PeriodicalId\":152297,\"journal\":{\"name\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2010.5651330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 18th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2010.5651330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

面部动作单元自动检测是一个在行为科学和人机交互领域有着广泛应用的研究课题。在二维图像中,天文望远镜的检测性能日趋成熟,但还不够完善。在本研究中,我们开发了一种检测3D图像中的AUs的方法,并展示了其相对于2D图像的优势。数据模态为二维曲率映射,由三维曲面数据的保角映射得到。由于性能比较是在使用相同算法的2D数据上运行的,因此可以排除3D模式可能引起的任何偏差。我们还讨论了生成与判别分类器的选择,并考虑了2D-3D融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting action units on 3D faces
Automatic facial action unit (AU) detection is a research topic that finds many applications in behavioral science and human computer interaction. The AU detection performance in 2D images are maturing but are not yet adequate. In this study, we develop a method to detect AUs in 3D images and show its superiority vis-a-vis 2D. The data modality is 2D curvature map, which is obtained by conformal mapping of 3D surface data. Since performance comparisons are run on 2D data with the same algorithms, any bias that could be induced by 3D modality is precluded. We address also the choice of generative versus discriminative classifiers, and consider 2D-3D fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信