从在线评论中发现属性特定的特征:自动化工具和人类认知之间的差距是什么?

X. Jing, Penghao Wang, Julia M. Rayz
{"title":"从在线评论中发现属性特定的特征:自动化工具和人类认知之间的差距是什么?","authors":"X. Jing, Penghao Wang, Julia M. Rayz","doi":"10.4018/IJSSCI.2018040101","DOIUrl":null,"url":null,"abstract":"Thisarticledescribeshowonlinereviewsplayanimportantroleindatadrivendecisionmaking. Manyeffortshavebeeninvestedindeterminingtheoverallsentimentcarriedbythereviews.However, oftentimes,theoverallratingsofthereviewsdonotrepresentopinionstowardspecificattributes ofaproduct.Anidealopinionminingtoolshouldaimatfindingboththeproductattributesand theircorrespondingopinions.Theauthorsproposeanapproachforextractingtheattributespecific featuresfromonlinereviewsusingaWord2Vecmodelcombinedwithclustering.Twoexperiments aredescribed in thispaper: thefirst focuseson testing theperformanceof theWord2Vecmodel onextractingproductaspectwords,thesecondaddresseshowwelltheextractedfeaturesobtained arerecognizablebyhumancognition.Anewmetriccalledthe“splitvalue”thatisbasedoncluster similarityanddiversityisintroducedtoexaminetheconsistencyofclusteringalgorithm.Theauthors’ experimentssuggestthatmeaningfulclusters,whichprovideinsightstotheproductattributesand sentiments,couldbeextractedfromthereviews. KeyWORDS Artificial Intelligence, Clustering, Cognition, Feature Extraction, Opinion Mining, Text Understand, Word2Vec","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"35 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Discovering Attribute-Specific Features From Online Reviews: What Is the Gap Between Automated Tools and Human Cognition?\",\"authors\":\"X. Jing, Penghao Wang, Julia M. Rayz\",\"doi\":\"10.4018/IJSSCI.2018040101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thisarticledescribeshowonlinereviewsplayanimportantroleindatadrivendecisionmaking. Manyeffortshavebeeninvestedindeterminingtheoverallsentimentcarriedbythereviews.However, oftentimes,theoverallratingsofthereviewsdonotrepresentopinionstowardspecificattributes ofaproduct.Anidealopinionminingtoolshouldaimatfindingboththeproductattributesand theircorrespondingopinions.Theauthorsproposeanapproachforextractingtheattributespecific featuresfromonlinereviewsusingaWord2Vecmodelcombinedwithclustering.Twoexperiments aredescribed in thispaper: thefirst focuseson testing theperformanceof theWord2Vecmodel onextractingproductaspectwords,thesecondaddresseshowwelltheextractedfeaturesobtained arerecognizablebyhumancognition.Anewmetriccalledthe“splitvalue”thatisbasedoncluster similarityanddiversityisintroducedtoexaminetheconsistencyofclusteringalgorithm.Theauthors’ experimentssuggestthatmeaningfulclusters,whichprovideinsightstotheproductattributesand sentiments,couldbeextractedfromthereviews. KeyWORDS Artificial Intelligence, Clustering, Cognition, Feature Extraction, Opinion Mining, Text Understand, Word2Vec\",\"PeriodicalId\":432255,\"journal\":{\"name\":\"Int. J. Softw. Sci. Comput. Intell.\",\"volume\":\"35 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Sci. Comput. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSSCI.2018040101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSCI.2018040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Thisarticledescribeshowonlinereviewsplayanimportantroleindatadrivendecisionmaking。Manyeffortshavebeeninvestedindeterminingtheoverallsentimentcarriedbythereviews。However,通常是theoverallratingsofthereviewsdonotrepresentopinionstowardspecificattributes ofaproduct。Anidealopinionminingtoolshouldaimatfindingboththeproductattributesand theircorrespondingopinions。Theauthorsproposeanapproachforextractingtheattributespecific featuresfromonlinereviewsusingaWord2Vecmodelcombinedwithclustering。Twoexperiments aredescribed in> thispaper: > thefirst focuseson testing> theperformanceof theWord2Vecmodel onextractingproductaspectwords,thesecondaddresseshowwelltheextractedfeaturesobtained arerecognizablebyhumancognition。Anewmetriccalledthe " splitvalue " thatisbasedoncluster similarityanddiversityisintroducedtoexaminetheconsistencyofclusteringalgorithm。Theauthors ' ' experimentssuggestthatmeaningfulclusters,whichprovideinsightstotheproductattributesand情绪,couldbeextractedfromthereviews。关键词:人工智能,聚类,认知,特征提取,意见挖掘,文本理解,Word2Vec
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering Attribute-Specific Features From Online Reviews: What Is the Gap Between Automated Tools and Human Cognition?
Thisarticledescribeshowonlinereviewsplayanimportantroleindatadrivendecisionmaking. Manyeffortshavebeeninvestedindeterminingtheoverallsentimentcarriedbythereviews.However, oftentimes,theoverallratingsofthereviewsdonotrepresentopinionstowardspecificattributes ofaproduct.Anidealopinionminingtoolshouldaimatfindingboththeproductattributesand theircorrespondingopinions.Theauthorsproposeanapproachforextractingtheattributespecific featuresfromonlinereviewsusingaWord2Vecmodelcombinedwithclustering.Twoexperiments aredescribed in thispaper: thefirst focuseson testing theperformanceof theWord2Vecmodel onextractingproductaspectwords,thesecondaddresseshowwelltheextractedfeaturesobtained arerecognizablebyhumancognition.Anewmetriccalledthe“splitvalue”thatisbasedoncluster similarityanddiversityisintroducedtoexaminetheconsistencyofclusteringalgorithm.Theauthors’ experimentssuggestthatmeaningfulclusters,whichprovideinsightstotheproductattributesand sentiments,couldbeextractedfromthereviews. KeyWORDS Artificial Intelligence, Clustering, Cognition, Feature Extraction, Opinion Mining, Text Understand, Word2Vec
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信