多用户毫米波大规模MIMO系统的混合波束形成分组和速率最大化算法

Jian Liu, Xuan Yang, Qianfang Sun, Renmin Zhang, Yingjing Qian
{"title":"多用户毫米波大规模MIMO系统的混合波束形成分组和速率最大化算法","authors":"Jian Liu, Xuan Yang, Qianfang Sun, Renmin Zhang, Yingjing Qian","doi":"10.1155/2022/2865659","DOIUrl":null,"url":null,"abstract":"For multiuser millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, the key factor that causes the system sum-rate to change is its interference plus noise, corresponding to the number of base station (BS) antennas and signal-to-noise ratio (SNR) variation causing the system sum-rate changes, which in turn affects the user’s communication quality. Based on this, this paper proposes an improved low-complexity hybrid beamforming grouping sum-rate maximization (HBG-SRM) algorithm to achieve system sum-rate maximization under the premise that both BS and user side use hybrid beamforming architecture and the channel state information (CSI) of the downlink channel is perfect. The algorithm first predefines a relevant threshold value, which is used to group multiusers; then, the user uses the maximum likelihood (ML) criterion to identify the optimal beam and estimate its beamforming gain within each group, and finally, the user compares all the candidate optimal beam gains between each group to confirm the optimal beamforming vector. The simulation results also verify the superiority of the proposed algorithm’s sum-rate over other algorithms.","PeriodicalId":204253,"journal":{"name":"Int. J. Digit. Multim. Broadcast.","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Beamforming Grouping Sum-Rate Maximization Algorithm for Multiuser mmWave Massive MIMO Systems\",\"authors\":\"Jian Liu, Xuan Yang, Qianfang Sun, Renmin Zhang, Yingjing Qian\",\"doi\":\"10.1155/2022/2865659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For multiuser millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, the key factor that causes the system sum-rate to change is its interference plus noise, corresponding to the number of base station (BS) antennas and signal-to-noise ratio (SNR) variation causing the system sum-rate changes, which in turn affects the user’s communication quality. Based on this, this paper proposes an improved low-complexity hybrid beamforming grouping sum-rate maximization (HBG-SRM) algorithm to achieve system sum-rate maximization under the premise that both BS and user side use hybrid beamforming architecture and the channel state information (CSI) of the downlink channel is perfect. The algorithm first predefines a relevant threshold value, which is used to group multiusers; then, the user uses the maximum likelihood (ML) criterion to identify the optimal beam and estimate its beamforming gain within each group, and finally, the user compares all the candidate optimal beam gains between each group to confirm the optimal beamforming vector. The simulation results also verify the superiority of the proposed algorithm’s sum-rate over other algorithms.\",\"PeriodicalId\":204253,\"journal\":{\"name\":\"Int. J. Digit. Multim. Broadcast.\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Digit. Multim. Broadcast.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2865659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Digit. Multim. Broadcast.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/2865659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于多用户毫米波(mmWave)海量多输入多输出(MIMO)系统,导致系统和速率变化的关键因素是其干扰加噪声,对应于基站(BS)天线数量和信噪比(SNR)的变化导致系统和速率的变化,进而影响用户的通信质量。在此基础上,本文提出了一种改进的低复杂度混合波束形成分组和速率最大化(HBG-SRM)算法,在BS端和用户端均采用混合波束形成架构,且下行信道信道状态信息(CSI)完备的前提下实现系统和速率最大化。该算法首先预先定义一个相关阈值,该阈值用于对多用户进行分组;然后,用户使用最大似然准则识别最佳波束并估计其在每组内的波束形成增益,最后,用户比较每组之间所有候选最优波束增益以确定最优波束形成矢量。仿真结果也验证了该算法的和速率优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Beamforming Grouping Sum-Rate Maximization Algorithm for Multiuser mmWave Massive MIMO Systems
For multiuser millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, the key factor that causes the system sum-rate to change is its interference plus noise, corresponding to the number of base station (BS) antennas and signal-to-noise ratio (SNR) variation causing the system sum-rate changes, which in turn affects the user’s communication quality. Based on this, this paper proposes an improved low-complexity hybrid beamforming grouping sum-rate maximization (HBG-SRM) algorithm to achieve system sum-rate maximization under the premise that both BS and user side use hybrid beamforming architecture and the channel state information (CSI) of the downlink channel is perfect. The algorithm first predefines a relevant threshold value, which is used to group multiusers; then, the user uses the maximum likelihood (ML) criterion to identify the optimal beam and estimate its beamforming gain within each group, and finally, the user compares all the candidate optimal beam gains between each group to confirm the optimal beamforming vector. The simulation results also verify the superiority of the proposed algorithm’s sum-rate over other algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信