Theodore E. Bott, Tyler Stump, Marcos D. Caballero, Daryl McPadden, P. Irving
{"title":"研究问题设计与计算思维实践的关系","authors":"Theodore E. Bott, Tyler Stump, Marcos D. Caballero, Daryl McPadden, P. Irving","doi":"10.1119/perc.2022.pr.bott","DOIUrl":null,"url":null,"abstract":"With the growing ubiquity of computation in STEM fields, understanding how to teach computational thinking (CT) practices has become an active research area in the last two decades, with particular emphasis on developing CT frameworks. In this paper, we apply one of these CT frameworks and compare the results with a task analysis to examine how CT practices relate to specific design features of an in-class problem. We have analyzed video data from two separate groups working on one computational class period, which utilizes a minimally working program to model magnetic field vectors. While still in the initial stages of the study, our preliminary results indicate that what is left out of the minimally working program will impact the CT practices students use, particularly around building computational models. Ultimately, we hope this work will help instructors to design activities that can target & build specific CT practices.","PeriodicalId":253382,"journal":{"name":"2022 Physics Education Research Conference Proceedings","volume":"54 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining how problem design relates to computational thinking practices\",\"authors\":\"Theodore E. Bott, Tyler Stump, Marcos D. Caballero, Daryl McPadden, P. Irving\",\"doi\":\"10.1119/perc.2022.pr.bott\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing ubiquity of computation in STEM fields, understanding how to teach computational thinking (CT) practices has become an active research area in the last two decades, with particular emphasis on developing CT frameworks. In this paper, we apply one of these CT frameworks and compare the results with a task analysis to examine how CT practices relate to specific design features of an in-class problem. We have analyzed video data from two separate groups working on one computational class period, which utilizes a minimally working program to model magnetic field vectors. While still in the initial stages of the study, our preliminary results indicate that what is left out of the minimally working program will impact the CT practices students use, particularly around building computational models. Ultimately, we hope this work will help instructors to design activities that can target & build specific CT practices.\",\"PeriodicalId\":253382,\"journal\":{\"name\":\"2022 Physics Education Research Conference Proceedings\",\"volume\":\"54 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Physics Education Research Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1119/perc.2022.pr.bott\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Physics Education Research Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1119/perc.2022.pr.bott","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Examining how problem design relates to computational thinking practices
With the growing ubiquity of computation in STEM fields, understanding how to teach computational thinking (CT) practices has become an active research area in the last two decades, with particular emphasis on developing CT frameworks. In this paper, we apply one of these CT frameworks and compare the results with a task analysis to examine how CT practices relate to specific design features of an in-class problem. We have analyzed video data from two separate groups working on one computational class period, which utilizes a minimally working program to model magnetic field vectors. While still in the initial stages of the study, our preliminary results indicate that what is left out of the minimally working program will impact the CT practices students use, particularly around building computational models. Ultimately, we hope this work will help instructors to design activities that can target & build specific CT practices.