W. Luo, Eva Goebel, Patrick Reipschläger, Mats Ole Ellenberg, Raimund Dachselt
{"title":"使用空间感知移动设备在增强现实中探索和切片体积医疗数据","authors":"W. Luo, Eva Goebel, Patrick Reipschläger, Mats Ole Ellenberg, Raimund Dachselt","doi":"10.1109/ISMAR-Adjunct54149.2021.00076","DOIUrl":null,"url":null,"abstract":"We present a concept and early prototype for exploring volumetric medical data, e.g., from MRI or CT scans, in head-mounted Augmented Reality (AR) with a spatially tracked tablet. Our goal is to address the lack of immersion and intuitive input of conventional systems by providing spatial navigation to extract arbitrary slices from volumetric data directly in three-dimensional space. A 3D model of the medical data is displayed in the real environment, fixed to a particular location, using AR. The tablet is spatially moved through this virtual 3D model and shows the resulting slices as 2D images. We present several techniques that facilitate this overall concept, e.g., to place and explore the model, as well as to capture, annotate, and compare slices of the data. Furthermore, we implemented a proof-of-concept prototype that demonstrates the feasibility of our concepts. With our work we want to improve the current way of working with volumetric data slices in the medical domain and beyond.","PeriodicalId":244088,"journal":{"name":"2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","volume":"18 25","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Exploring and Slicing Volumetric Medical Data in Augmented Reality Using a Spatially-Aware Mobile Device\",\"authors\":\"W. Luo, Eva Goebel, Patrick Reipschläger, Mats Ole Ellenberg, Raimund Dachselt\",\"doi\":\"10.1109/ISMAR-Adjunct54149.2021.00076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a concept and early prototype for exploring volumetric medical data, e.g., from MRI or CT scans, in head-mounted Augmented Reality (AR) with a spatially tracked tablet. Our goal is to address the lack of immersion and intuitive input of conventional systems by providing spatial navigation to extract arbitrary slices from volumetric data directly in three-dimensional space. A 3D model of the medical data is displayed in the real environment, fixed to a particular location, using AR. The tablet is spatially moved through this virtual 3D model and shows the resulting slices as 2D images. We present several techniques that facilitate this overall concept, e.g., to place and explore the model, as well as to capture, annotate, and compare slices of the data. Furthermore, we implemented a proof-of-concept prototype that demonstrates the feasibility of our concepts. With our work we want to improve the current way of working with volumetric data slices in the medical domain and beyond.\",\"PeriodicalId\":244088,\"journal\":{\"name\":\"2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)\",\"volume\":\"18 25\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMAR-Adjunct54149.2021.00076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR-Adjunct54149.2021.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring and Slicing Volumetric Medical Data in Augmented Reality Using a Spatially-Aware Mobile Device
We present a concept and early prototype for exploring volumetric medical data, e.g., from MRI or CT scans, in head-mounted Augmented Reality (AR) with a spatially tracked tablet. Our goal is to address the lack of immersion and intuitive input of conventional systems by providing spatial navigation to extract arbitrary slices from volumetric data directly in three-dimensional space. A 3D model of the medical data is displayed in the real environment, fixed to a particular location, using AR. The tablet is spatially moved through this virtual 3D model and shows the resulting slices as 2D images. We present several techniques that facilitate this overall concept, e.g., to place and explore the model, as well as to capture, annotate, and compare slices of the data. Furthermore, we implemented a proof-of-concept prototype that demonstrates the feasibility of our concepts. With our work we want to improve the current way of working with volumetric data slices in the medical domain and beyond.