Kimberley Hemmings-Jarrett, Julian Jarrett, M. Brian Blake
{"title":"评价一种可重用技术,用于改进用于决策的众包情感的社会媒体查询标准","authors":"Kimberley Hemmings-Jarrett, Julian Jarrett, M. Brian Blake","doi":"10.1109/IRI.2019.00065","DOIUrl":null,"url":null,"abstract":"There are three categories of users that consume social media data either for their personal use or for aggregation and presentation to others. These users rely on a preferential combination of Social Media Signals (SMS) that satisfies their information goals and aids in their decisionmaking. The research community is split on how to deal with some signals such as text originating from robotic voices; some suggest removing them while others are more interested in better identifying them. This paper statistically tests the SMS's in a dataset gathered during one of the political debates during the US Presidential Elections in 2016. It introduces a reusable technique aimed at contributing to the iterative and symbiotic user-system relationship, while improving the opportunity for arriving at empirically supported results for decision-making instances regardless of the consumer group.","PeriodicalId":295028,"journal":{"name":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"603 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of a Reusable Technique for Refining Social Media Query Criteria for Crowd-Sourced Sentiment for Decision Making\",\"authors\":\"Kimberley Hemmings-Jarrett, Julian Jarrett, M. Brian Blake\",\"doi\":\"10.1109/IRI.2019.00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are three categories of users that consume social media data either for their personal use or for aggregation and presentation to others. These users rely on a preferential combination of Social Media Signals (SMS) that satisfies their information goals and aids in their decisionmaking. The research community is split on how to deal with some signals such as text originating from robotic voices; some suggest removing them while others are more interested in better identifying them. This paper statistically tests the SMS's in a dataset gathered during one of the political debates during the US Presidential Elections in 2016. It introduces a reusable technique aimed at contributing to the iterative and symbiotic user-system relationship, while improving the opportunity for arriving at empirically supported results for decision-making instances regardless of the consumer group.\",\"PeriodicalId\":295028,\"journal\":{\"name\":\"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"volume\":\"603 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2019.00065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2019.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of a Reusable Technique for Refining Social Media Query Criteria for Crowd-Sourced Sentiment for Decision Making
There are three categories of users that consume social media data either for their personal use or for aggregation and presentation to others. These users rely on a preferential combination of Social Media Signals (SMS) that satisfies their information goals and aids in their decisionmaking. The research community is split on how to deal with some signals such as text originating from robotic voices; some suggest removing them while others are more interested in better identifying them. This paper statistically tests the SMS's in a dataset gathered during one of the political debates during the US Presidential Elections in 2016. It introduces a reusable technique aimed at contributing to the iterative and symbiotic user-system relationship, while improving the opportunity for arriving at empirically supported results for decision-making instances regardless of the consumer group.