基于切换线性模型的变形手势识别

Mun-Ho Jeong, Y. Kuno, N. Shimada, Y. Shirai
{"title":"基于切换线性模型的变形手势识别","authors":"Mun-Ho Jeong, Y. Kuno, N. Shimada, Y. Shirai","doi":"10.1109/ICIAP.2001.956979","DOIUrl":null,"url":null,"abstract":"We present a method to track and recognise shape-changing hand gestures simultaneously. The switching linear model using the active contour model corresponds well to temporal shapes and motions of hands. Inference in the switching linear model is computationally intractable and therefore the learning process cannot be performed via the exact EM (expectation maximization) algorithm. However, we present an approximate EM algorithm using a collapsing method in which some Gaussians are merged into a single Gaussian. Tracking is performed through the forward algorithm based on Kalman filtering and the collapsing method. We also present the regularized smoothing, which plays a role in reducing jump changes between the training sequences of state vectors to cope with complex-variable hand shapes. The recognition process is performed by the selection of a model with the maximum likelihood from some learned models while tracking is being performed. Experiments for several shape-changing hand gestures are demonstrated.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recognition of shape-changing hand gestures based on switching linear model\",\"authors\":\"Mun-Ho Jeong, Y. Kuno, N. Shimada, Y. Shirai\",\"doi\":\"10.1109/ICIAP.2001.956979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method to track and recognise shape-changing hand gestures simultaneously. The switching linear model using the active contour model corresponds well to temporal shapes and motions of hands. Inference in the switching linear model is computationally intractable and therefore the learning process cannot be performed via the exact EM (expectation maximization) algorithm. However, we present an approximate EM algorithm using a collapsing method in which some Gaussians are merged into a single Gaussian. Tracking is performed through the forward algorithm based on Kalman filtering and the collapsing method. We also present the regularized smoothing, which plays a role in reducing jump changes between the training sequences of state vectors to cope with complex-variable hand shapes. The recognition process is performed by the selection of a model with the maximum likelihood from some learned models while tracking is being performed. Experiments for several shape-changing hand gestures are demonstrated.\",\"PeriodicalId\":365627,\"journal\":{\"name\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2001.956979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.956979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一种同时跟踪和识别形状变化手势的方法。使用活动轮廓模型的切换线性模型很好地符合手的时间形状和运动。切换线性模型中的推理在计算上难以处理,因此学习过程不能通过精确的EM(期望最大化)算法来执行。然而,我们提出了一种近似的EM算法,使用一种坍缩方法,其中一些高斯分布合并为单个高斯分布。采用基于卡尔曼滤波的前向跟踪算法和压缩算法进行跟踪。我们还提出了正则化平滑,它可以减少状态向量训练序列之间的跳跃变化,以应对复杂的可变手形。识别过程是在跟踪过程中,从一些学习到的模型中选择一个具有最大似然的模型来完成的。演示了几种变形手势的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of shape-changing hand gestures based on switching linear model
We present a method to track and recognise shape-changing hand gestures simultaneously. The switching linear model using the active contour model corresponds well to temporal shapes and motions of hands. Inference in the switching linear model is computationally intractable and therefore the learning process cannot be performed via the exact EM (expectation maximization) algorithm. However, we present an approximate EM algorithm using a collapsing method in which some Gaussians are merged into a single Gaussian. Tracking is performed through the forward algorithm based on Kalman filtering and the collapsing method. We also present the regularized smoothing, which plays a role in reducing jump changes between the training sequences of state vectors to cope with complex-variable hand shapes. The recognition process is performed by the selection of a model with the maximum likelihood from some learned models while tracking is being performed. Experiments for several shape-changing hand gestures are demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信