O(n)深度-2的前馈神经网络二进制加法

S. Vassiliadis, K. Bertels, G. Pechanek
{"title":"O(n)深度-2的前馈神经网络二进制加法","authors":"S. Vassiliadis, K. Bertels, G. Pechanek","doi":"10.1109/ICNN.1994.374487","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the reduction of the size of depth-2 feedforward neural networks performing binary addition and related functions. We suggest that 2-1 binary n-bit addition and some related functions can be computed in a depth-2 network of size O(n) with maximum fan-in of 2n+1. Furthermore, we show, if both input polarities are available, that the comparison can be computed in a depth-1 network of size O(1) also with maximum fan-in of 2n+1.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"O(n) depth-2 binary addition with feedforward neural nets\",\"authors\":\"S. Vassiliadis, K. Bertels, G. Pechanek\",\"doi\":\"10.1109/ICNN.1994.374487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the reduction of the size of depth-2 feedforward neural networks performing binary addition and related functions. We suggest that 2-1 binary n-bit addition and some related functions can be computed in a depth-2 network of size O(n) with maximum fan-in of 2n+1. Furthermore, we show, if both input polarities are available, that the comparison can be computed in a depth-1 network of size O(1) also with maximum fan-in of 2n+1.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了深度-2前馈神经网络的二进制加法和相关函数的缩减问题。我们建议2-1二进制n位加法和一些相关函数可以在深度为2的网络中计算,网络大小为O(n),最大扇入为2n+1。此外,我们表明,如果两个输入极性都可用,则可以在大小为O(1)的深度1网络中计算比较,并且最大扇入为2n+1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
O(n) depth-2 binary addition with feedforward neural nets
In this paper we investigate the reduction of the size of depth-2 feedforward neural networks performing binary addition and related functions. We suggest that 2-1 binary n-bit addition and some related functions can be computed in a depth-2 network of size O(n) with maximum fan-in of 2n+1. Furthermore, we show, if both input polarities are available, that the comparison can be computed in a depth-1 network of size O(1) also with maximum fan-in of 2n+1.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信