费曼范畴和表征理论

R. Kaufmann
{"title":"费曼范畴和表征理论","authors":"R. Kaufmann","doi":"10.1090/CONM/769/15419","DOIUrl":null,"url":null,"abstract":"We give a presentation of Feynman categories from a representation--theoretical viewpoint. \nFeynman categories are a special type of monoidal categories and their representations are monoidal functors. They can be viewed as a far reaching generalization of groups, algebras and modules. Taking a new algebraic approach, we provide more examples and more details for several key constructions. This leads to new applications and results. \nThe text is intended to be a self--contained basis for a crossover of more elevated constructions and results in the fields of representation theory and Feynman categories, whose applications so far include number theory, geometry, topology and physics.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Feynman categories and representation\\n theory\",\"authors\":\"R. Kaufmann\",\"doi\":\"10.1090/CONM/769/15419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a presentation of Feynman categories from a representation--theoretical viewpoint. \\nFeynman categories are a special type of monoidal categories and their representations are monoidal functors. They can be viewed as a far reaching generalization of groups, algebras and modules. Taking a new algebraic approach, we provide more examples and more details for several key constructions. This leads to new applications and results. \\nThe text is intended to be a self--contained basis for a crossover of more elevated constructions and results in the fields of representation theory and Feynman categories, whose applications so far include number theory, geometry, topology and physics.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/769/15419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/769/15419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们从表征理论的角度给出了费曼范畴的一个表述。费曼范畴是一类特殊的一元范畴,它的表示是一元函子。它们可以被看作是群、代数和模的广泛推广。采用一种新的代数方法,我们为几个关键结构提供了更多的例子和更多的细节。这导致了新的应用和结果。文本的目的是成为一个自我包含的基础,交叉更高级的结构和结果在表示理论和费曼范畴的领域,其应用到目前为止包括数论,几何,拓扑和物理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feynman categories and representation theory
We give a presentation of Feynman categories from a representation--theoretical viewpoint. Feynman categories are a special type of monoidal categories and their representations are monoidal functors. They can be viewed as a far reaching generalization of groups, algebras and modules. Taking a new algebraic approach, we provide more examples and more details for several key constructions. This leads to new applications and results. The text is intended to be a self--contained basis for a crossover of more elevated constructions and results in the fields of representation theory and Feynman categories, whose applications so far include number theory, geometry, topology and physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信