{"title":"贝利在哪里?:使用可穿戴和手持设备的普遍定位","authors":"L. H. John, Chayan Sarkar, R. V. Prasad","doi":"10.1145/3231535.3231536","DOIUrl":null,"url":null,"abstract":"Smartphones or in general handhelds commonly used for indoor localization purposes are not a viable option in places where people do not carry them all the time - for example, home and office. Alternatively, wearable devices can partially solve this problem but have many limitations with respect to power supply, processing capability, and availability of sensors. These issues prevent the adoption of many common handheld localization solutions. In this work, we present PErvasive Localization Engine (PELE), a distributed localization system that uses wearable and handheld jointly to address the above drawbacks. Using only magnetometer, accelerometer, and Bluetooth radio, localization is performed by means of a particle filter. In addition, a dynamic handoff mechanism is presented, which uses the wearable only when it is necessary, thus reducing energy consumption on the wearable without affecting the desired localization accuracy. Evaluating the system with ten participants, we achieve a localization accuracy of 90.31 % in an indoor environment spanning about 320 m2.","PeriodicalId":447904,"journal":{"name":"SIGBED Rev.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Where is PELE?: pervasive localization using wearable and handheld devices\",\"authors\":\"L. H. John, Chayan Sarkar, R. V. Prasad\",\"doi\":\"10.1145/3231535.3231536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smartphones or in general handhelds commonly used for indoor localization purposes are not a viable option in places where people do not carry them all the time - for example, home and office. Alternatively, wearable devices can partially solve this problem but have many limitations with respect to power supply, processing capability, and availability of sensors. These issues prevent the adoption of many common handheld localization solutions. In this work, we present PErvasive Localization Engine (PELE), a distributed localization system that uses wearable and handheld jointly to address the above drawbacks. Using only magnetometer, accelerometer, and Bluetooth radio, localization is performed by means of a particle filter. In addition, a dynamic handoff mechanism is presented, which uses the wearable only when it is necessary, thus reducing energy consumption on the wearable without affecting the desired localization accuracy. Evaluating the system with ten participants, we achieve a localization accuracy of 90.31 % in an indoor environment spanning about 320 m2.\",\"PeriodicalId\":447904,\"journal\":{\"name\":\"SIGBED Rev.\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGBED Rev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3231535.3231536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGBED Rev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3231535.3231536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Where is PELE?: pervasive localization using wearable and handheld devices
Smartphones or in general handhelds commonly used for indoor localization purposes are not a viable option in places where people do not carry them all the time - for example, home and office. Alternatively, wearable devices can partially solve this problem but have many limitations with respect to power supply, processing capability, and availability of sensors. These issues prevent the adoption of many common handheld localization solutions. In this work, we present PErvasive Localization Engine (PELE), a distributed localization system that uses wearable and handheld jointly to address the above drawbacks. Using only magnetometer, accelerometer, and Bluetooth radio, localization is performed by means of a particle filter. In addition, a dynamic handoff mechanism is presented, which uses the wearable only when it is necessary, thus reducing energy consumption on the wearable without affecting the desired localization accuracy. Evaluating the system with ten participants, we achieve a localization accuracy of 90.31 % in an indoor environment spanning about 320 m2.