基于ICA和BP神经网络的图像去噪方法

Chen Yan
{"title":"基于ICA和BP神经网络的图像去噪方法","authors":"Chen Yan","doi":"10.1109/IICSPI48186.2019.9095964","DOIUrl":null,"url":null,"abstract":"The image will inevitably be mixed with noise or interference signals in the process of acquisition and storage. For this reason, independent component analysis (ICA) and genetic Bayesian regularized BP neural networks are combined to deal with image denoising problems. Firstly, the image to be processed is separated into independent noisy images by ICA method. Then the noisy image is predicted by the genetic Bayesian regularized BP neural network to obtain a clear image. Experiments show this method can improve the PSNR and correlation coefficient of the image.","PeriodicalId":318693,"journal":{"name":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Denoising Method Based on ICA and BP Neural Network\",\"authors\":\"Chen Yan\",\"doi\":\"10.1109/IICSPI48186.2019.9095964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The image will inevitably be mixed with noise or interference signals in the process of acquisition and storage. For this reason, independent component analysis (ICA) and genetic Bayesian regularized BP neural networks are combined to deal with image denoising problems. Firstly, the image to be processed is separated into independent noisy images by ICA method. Then the noisy image is predicted by the genetic Bayesian regularized BP neural network to obtain a clear image. Experiments show this method can improve the PSNR and correlation coefficient of the image.\",\"PeriodicalId\":318693,\"journal\":{\"name\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI48186.2019.9095964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI48186.2019.9095964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像在采集和存储过程中不可避免地会混入噪声或干扰信号。为此,将独立分量分析(ICA)和遗传贝叶斯正则化BP神经网络相结合来处理图像去噪问题。首先,采用ICA方法将待处理图像分离成独立的噪声图像;然后利用遗传贝叶斯正则化BP神经网络对噪声图像进行预测,得到清晰的图像。实验表明,该方法可以提高图像的PSNR和相关系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Denoising Method Based on ICA and BP Neural Network
The image will inevitably be mixed with noise or interference signals in the process of acquisition and storage. For this reason, independent component analysis (ICA) and genetic Bayesian regularized BP neural networks are combined to deal with image denoising problems. Firstly, the image to be processed is separated into independent noisy images by ICA method. Then the noisy image is predicted by the genetic Bayesian regularized BP neural network to obtain a clear image. Experiments show this method can improve the PSNR and correlation coefficient of the image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信