彩色光谱分析减少砷检测误差

Taufhik Hossain Tonmoy, M. Hanif, Hafiz Abdur Rahman, N. Khandaker, Ishtiaque Hossain
{"title":"彩色光谱分析减少砷检测误差","authors":"Taufhik Hossain Tonmoy, M. Hanif, Hafiz Abdur Rahman, N. Khandaker, Ishtiaque Hossain","doi":"10.1109/ICCITECHN.2016.7860221","DOIUrl":null,"url":null,"abstract":"Groundwater contamination by Arsenic is a huge problem in many countries. In a developing country like Bangladesh, with widespread Arsenic contamination and lack of laboratory facilities, usually field detection kits are preferred to detect arsenic in tubewells. However, these kits produce a significant number of false positives/negatives due to human errors in matching the detection test-strip colors to the reference color chart. This paper introduces digital image processing methods and a smartphone application, which allow fast and inexpensive improvement in the test-strip classification of field detection kits. A smartphone captures a photo of the test strip used in the field detection kit, while the application detects the Arsenic level by comparison with reference colors. This automation reduces human errors while matching the colors using the eyes only, by adding an extra layer of cross-checking. Thus, the overall accuracy of the Arsenic detection process is improved.","PeriodicalId":287635,"journal":{"name":"2016 19th International Conference on Computer and Information Technology (ICCIT)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Error reduction in arsenic detection through color spectrum analysis\",\"authors\":\"Taufhik Hossain Tonmoy, M. Hanif, Hafiz Abdur Rahman, N. Khandaker, Ishtiaque Hossain\",\"doi\":\"10.1109/ICCITECHN.2016.7860221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Groundwater contamination by Arsenic is a huge problem in many countries. In a developing country like Bangladesh, with widespread Arsenic contamination and lack of laboratory facilities, usually field detection kits are preferred to detect arsenic in tubewells. However, these kits produce a significant number of false positives/negatives due to human errors in matching the detection test-strip colors to the reference color chart. This paper introduces digital image processing methods and a smartphone application, which allow fast and inexpensive improvement in the test-strip classification of field detection kits. A smartphone captures a photo of the test strip used in the field detection kit, while the application detects the Arsenic level by comparison with reference colors. This automation reduces human errors while matching the colors using the eyes only, by adding an extra layer of cross-checking. Thus, the overall accuracy of the Arsenic detection process is improved.\",\"PeriodicalId\":287635,\"journal\":{\"name\":\"2016 19th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 19th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2016.7860221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 19th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2016.7860221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

地下水砷污染在许多国家都是一个严重的问题。在孟加拉国这样的发展中国家,砷污染普遍存在,缺乏实验室设施,通常首选现场检测试剂盒来检测管井中的砷。然而,由于在将检测试纸条颜色与参考颜色表匹配时的人为错误,这些试剂盒会产生大量的假阳性/阴性。本文介绍了数字图像处理方法和智能手机应用程序,可以快速和廉价地改进现场检测试剂盒的测试条分类。智能手机捕捉到现场检测试剂盒中使用的测试条的照片,而应用程序通过与参考颜色进行比较来检测砷水平。这种自动化通过增加额外的交叉检查层,在仅使用眼睛匹配颜色时减少了人为错误。从而提高了砷检测过程的整体准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error reduction in arsenic detection through color spectrum analysis
Groundwater contamination by Arsenic is a huge problem in many countries. In a developing country like Bangladesh, with widespread Arsenic contamination and lack of laboratory facilities, usually field detection kits are preferred to detect arsenic in tubewells. However, these kits produce a significant number of false positives/negatives due to human errors in matching the detection test-strip colors to the reference color chart. This paper introduces digital image processing methods and a smartphone application, which allow fast and inexpensive improvement in the test-strip classification of field detection kits. A smartphone captures a photo of the test strip used in the field detection kit, while the application detects the Arsenic level by comparison with reference colors. This automation reduces human errors while matching the colors using the eyes only, by adding an extra layer of cross-checking. Thus, the overall accuracy of the Arsenic detection process is improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信