{"title":"黎曼函数的近似","authors":"P. Gauthier, N. Tarkhanov","doi":"10.1080/02781070412331331491","DOIUrl":null,"url":null,"abstract":"Any meromorphic function having at most simple poles can be approximated by linear combinations of translates of the Riemann zeta-function. In particular, an arbitrary holomorphic function can be so approximated. If derivatives of the zeta-function are allowed, then arbitrary meromorphic functions can be approximated.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Approximation by the Riemann zeta-function\",\"authors\":\"P. Gauthier, N. Tarkhanov\",\"doi\":\"10.1080/02781070412331331491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Any meromorphic function having at most simple poles can be approximated by linear combinations of translates of the Riemann zeta-function. In particular, an arbitrary holomorphic function can be so approximated. If derivatives of the zeta-function are allowed, then arbitrary meromorphic functions can be approximated.\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070412331331491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070412331331491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Any meromorphic function having at most simple poles can be approximated by linear combinations of translates of the Riemann zeta-function. In particular, an arbitrary holomorphic function can be so approximated. If derivatives of the zeta-function are allowed, then arbitrary meromorphic functions can be approximated.