{"title":"横向弧线旋回推进量的定量均匀分布","authors":"Davide Ravotti","doi":"10.4171/lem/66-1/2-7","DOIUrl":null,"url":null,"abstract":"Let $M = \\Gamma \\backslash \\text{SL}(2,\\mathbb{R})$ be a compact quotient of $\\text{SL}(2,\\mathbb{R})$ equipped with the normalized Haar measure $\\text{vol}$, and let $\\{h_t\\}_{t \\in \\mathbb{R}}$ denote the horocycle flow on $M$. Given $p \\in M$ and $W \\in \\mathfrak{sl}_2(\\mathbb{R}) \\setminus \\{0\\}$ not parallel to the generator of the horocycle flow, let $\\gamma_{p}^W$ denote the probability measure uniformly distributed along the arc $s \\mapsto p \\exp(sW)$ for $0\\leq s \\leq 1$. We establish quantitative estimates for the rate of convergence of $[(h_t)_{\\ast} \\gamma_{p}^W](f)$ to $\\text{vol}(f)$ for sufficiently smooth functions $f$. Our result is based on the work of Bufetov and Forni [2], together with a crucial geometric observation. As a corollary, we provide an alternative proof of Ratner's theorem on quantitative mixing for the horocycle flow.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quantitative equidistribution of horocycle push-forwards of transverse arcs\",\"authors\":\"Davide Ravotti\",\"doi\":\"10.4171/lem/66-1/2-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M = \\\\Gamma \\\\backslash \\\\text{SL}(2,\\\\mathbb{R})$ be a compact quotient of $\\\\text{SL}(2,\\\\mathbb{R})$ equipped with the normalized Haar measure $\\\\text{vol}$, and let $\\\\{h_t\\\\}_{t \\\\in \\\\mathbb{R}}$ denote the horocycle flow on $M$. Given $p \\\\in M$ and $W \\\\in \\\\mathfrak{sl}_2(\\\\mathbb{R}) \\\\setminus \\\\{0\\\\}$ not parallel to the generator of the horocycle flow, let $\\\\gamma_{p}^W$ denote the probability measure uniformly distributed along the arc $s \\\\mapsto p \\\\exp(sW)$ for $0\\\\leq s \\\\leq 1$. We establish quantitative estimates for the rate of convergence of $[(h_t)_{\\\\ast} \\\\gamma_{p}^W](f)$ to $\\\\text{vol}(f)$ for sufficiently smooth functions $f$. Our result is based on the work of Bufetov and Forni [2], together with a crucial geometric observation. As a corollary, we provide an alternative proof of Ratner's theorem on quantitative mixing for the horocycle flow.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/66-1/2-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/66-1/2-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
设$M = \Gamma \backslash \text{SL}(2,\mathbb{R})$为具有归一化哈尔测度$\text{vol}$的$\text{SL}(2,\mathbb{R})$的紧商,设$\{h_t\}_{t \in \mathbb{R}}$为$M$上的环流。假定$p \in M$和$W \in \mathfrak{sl}_2(\mathbb{R}) \setminus \{0\}$不平行于环形流的发生器,设$\gamma_{p}^W$表示$0\leq s \leq 1$沿弧线$s \mapsto p \exp(sW)$均匀分布的概率测度。对于足够光滑的函数$f$,我们建立了$[(h_t)_{\ast} \gamma_{p}^W](f)$到$\text{vol}(f)$收敛速率的定量估计。我们的结果是基于Bufetov和Forni[2]的工作,以及一个关键的几何观测。作为一个推论,我们提供了关于环形流定量混合的拉特纳定理的另一种证明。
Quantitative equidistribution of horocycle push-forwards of transverse arcs
Let $M = \Gamma \backslash \text{SL}(2,\mathbb{R})$ be a compact quotient of $\text{SL}(2,\mathbb{R})$ equipped with the normalized Haar measure $\text{vol}$, and let $\{h_t\}_{t \in \mathbb{R}}$ denote the horocycle flow on $M$. Given $p \in M$ and $W \in \mathfrak{sl}_2(\mathbb{R}) \setminus \{0\}$ not parallel to the generator of the horocycle flow, let $\gamma_{p}^W$ denote the probability measure uniformly distributed along the arc $s \mapsto p \exp(sW)$ for $0\leq s \leq 1$. We establish quantitative estimates for the rate of convergence of $[(h_t)_{\ast} \gamma_{p}^W](f)$ to $\text{vol}(f)$ for sufficiently smooth functions $f$. Our result is based on the work of Bufetov and Forni [2], together with a crucial geometric observation. As a corollary, we provide an alternative proof of Ratner's theorem on quantitative mixing for the horocycle flow.