基于云计算稀疏表示的视觉显著性移动图像分类

Duan-Yu Chen, Meng-Kai Hsieh, Junghsi Lee
{"title":"基于云计算稀疏表示的视觉显著性移动图像分类","authors":"Duan-Yu Chen, Meng-Kai Hsieh, Junghsi Lee","doi":"10.1109/ISIC.2012.6449748","DOIUrl":null,"url":null,"abstract":"Given the increasing number of mobile platforms, a key technical challenge is how to provide an optimal photo browsing experience given the limited screen size available on mobile devices. This paper proposes a novel technique for intelligent mobile image categorization on mobile platform to reduce computation complexity based on cloud computing. In this technique, captured images are analyzed to detect visual salient area, which is then classified in real-time using sparse representation. Mathematically, the derived algorithm regards the salient regions as the dictionary in sparse representation, and selects the salient regions that minimize the residual output error iteratively, thus the resulting regions have a direct correspondence to the performance requirements of the given problem. Experimental results obtained using extensive datasets captured under uncontrolled conditions show the proposed system effectively manages mobile images using sparse representation on cloud computing.","PeriodicalId":393653,"journal":{"name":"2012 International Conference on Information Security and Intelligent Control","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual saliency based mobile images categorization using sparse representation on cloud computing\",\"authors\":\"Duan-Yu Chen, Meng-Kai Hsieh, Junghsi Lee\",\"doi\":\"10.1109/ISIC.2012.6449748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the increasing number of mobile platforms, a key technical challenge is how to provide an optimal photo browsing experience given the limited screen size available on mobile devices. This paper proposes a novel technique for intelligent mobile image categorization on mobile platform to reduce computation complexity based on cloud computing. In this technique, captured images are analyzed to detect visual salient area, which is then classified in real-time using sparse representation. Mathematically, the derived algorithm regards the salient regions as the dictionary in sparse representation, and selects the salient regions that minimize the residual output error iteratively, thus the resulting regions have a direct correspondence to the performance requirements of the given problem. Experimental results obtained using extensive datasets captured under uncontrolled conditions show the proposed system effectively manages mobile images using sparse representation on cloud computing.\",\"PeriodicalId\":393653,\"journal\":{\"name\":\"2012 International Conference on Information Security and Intelligent Control\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Information Security and Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2012.6449748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Information Security and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2012.6449748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着移动平台数量的增加,一个关键的技术挑战是如何在移动设备有限的屏幕尺寸下提供最佳的照片浏览体验。为了降低计算复杂度,提出了一种基于云计算的移动平台智能图像分类新技术。在该技术中,对捕获的图像进行分析以检测视觉显著区域,然后使用稀疏表示对其进行实时分类。在数学上,推导的算法将显著区域作为稀疏表示的字典,迭代地选择残差输出误差最小的显著区域,从而得到的显著区域与给定问题的性能要求直接对应。实验结果表明,该系统利用云计算上的稀疏表示对移动图像进行了有效的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual saliency based mobile images categorization using sparse representation on cloud computing
Given the increasing number of mobile platforms, a key technical challenge is how to provide an optimal photo browsing experience given the limited screen size available on mobile devices. This paper proposes a novel technique for intelligent mobile image categorization on mobile platform to reduce computation complexity based on cloud computing. In this technique, captured images are analyzed to detect visual salient area, which is then classified in real-time using sparse representation. Mathematically, the derived algorithm regards the salient regions as the dictionary in sparse representation, and selects the salient regions that minimize the residual output error iteratively, thus the resulting regions have a direct correspondence to the performance requirements of the given problem. Experimental results obtained using extensive datasets captured under uncontrolled conditions show the proposed system effectively manages mobile images using sparse representation on cloud computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信