Ivan Vorobevskii, Thi Thanh Huyen Luong, R. Kronenberg, T. Grünwald, C. Bernhofer
{"title":"出版补充材料:用地方、区域和全球BROOK90框架模拟蒸发:参数化和强迫的重要性。","authors":"Ivan Vorobevskii, Thi Thanh Huyen Luong, R. Kronenberg, T. Grünwald, C. Bernhofer","doi":"10.4211/hs.567d7bdc7b84465ca333b6e0c011853a","DOIUrl":null,"url":null,"abstract":"Abstract. Observation and estimation of evaporation is a challenging task. Evaporation occurs on each surface and is driven by different energy sources. Thus the correct process approximation in modelling of the terrestrial water balance plays a crucial part. Here, we use a physically-based 1D lumped soil-plant-atmosphere model (BROOK90) to study the role of parameter selection and meteorological input for modelled evaporation on the point scale. Then, with the integration of the model into global, regional and local frameworks, we made cross-combinations out of their parameterization and forcing schemes to analyse the associated model uncertainty. Five sites with different land uses (grassland, cropland, deciduous broadleaf forest, two evergreen needleleaf forests) located in Saxony, Germany were selected for the study. All combinations of the model setups were validated using FLUXNET data and various goodness of fit criteria. The output from a calibrated model with in-situ meteorological measurements served as a benchmark. We focused on the analysis of the model performance with regard to different time-scales (daily, monthly, and annual). Additionally, components of evaporation are addressed, including their representation in BROOK90. Finally, all results are discussed in the context of different sources of uncertainty: model process representation, input meteorological data and evaporation measurements themselves.\n","PeriodicalId":388186,"journal":{"name":"HydroShare Resources","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Supplement materials for publication: Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing.\",\"authors\":\"Ivan Vorobevskii, Thi Thanh Huyen Luong, R. Kronenberg, T. Grünwald, C. Bernhofer\",\"doi\":\"10.4211/hs.567d7bdc7b84465ca333b6e0c011853a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Observation and estimation of evaporation is a challenging task. Evaporation occurs on each surface and is driven by different energy sources. Thus the correct process approximation in modelling of the terrestrial water balance plays a crucial part. Here, we use a physically-based 1D lumped soil-plant-atmosphere model (BROOK90) to study the role of parameter selection and meteorological input for modelled evaporation on the point scale. Then, with the integration of the model into global, regional and local frameworks, we made cross-combinations out of their parameterization and forcing schemes to analyse the associated model uncertainty. Five sites with different land uses (grassland, cropland, deciduous broadleaf forest, two evergreen needleleaf forests) located in Saxony, Germany were selected for the study. All combinations of the model setups were validated using FLUXNET data and various goodness of fit criteria. The output from a calibrated model with in-situ meteorological measurements served as a benchmark. We focused on the analysis of the model performance with regard to different time-scales (daily, monthly, and annual). Additionally, components of evaporation are addressed, including their representation in BROOK90. Finally, all results are discussed in the context of different sources of uncertainty: model process representation, input meteorological data and evaporation measurements themselves.\\n\",\"PeriodicalId\":388186,\"journal\":{\"name\":\"HydroShare Resources\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HydroShare Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4211/hs.567d7bdc7b84465ca333b6e0c011853a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HydroShare Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4211/hs.567d7bdc7b84465ca333b6e0c011853a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supplement materials for publication: Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing.
Abstract. Observation and estimation of evaporation is a challenging task. Evaporation occurs on each surface and is driven by different energy sources. Thus the correct process approximation in modelling of the terrestrial water balance plays a crucial part. Here, we use a physically-based 1D lumped soil-plant-atmosphere model (BROOK90) to study the role of parameter selection and meteorological input for modelled evaporation on the point scale. Then, with the integration of the model into global, regional and local frameworks, we made cross-combinations out of their parameterization and forcing schemes to analyse the associated model uncertainty. Five sites with different land uses (grassland, cropland, deciduous broadleaf forest, two evergreen needleleaf forests) located in Saxony, Germany were selected for the study. All combinations of the model setups were validated using FLUXNET data and various goodness of fit criteria. The output from a calibrated model with in-situ meteorological measurements served as a benchmark. We focused on the analysis of the model performance with regard to different time-scales (daily, monthly, and annual). Additionally, components of evaporation are addressed, including their representation in BROOK90. Finally, all results are discussed in the context of different sources of uncertainty: model process representation, input meteorological data and evaporation measurements themselves.