cocomo标定的约束回归技术

Vu Nguyen, Bert Steece, B. Boehm
{"title":"cocomo标定的约束回归技术","authors":"Vu Nguyen, Bert Steece, B. Boehm","doi":"10.1145/1414004.1414040","DOIUrl":null,"url":null,"abstract":"Building cost estimation models is often considered a search problem in which the solver should return an optimal solution satisfying an objective function. This solution also needs to meet certain constraints. For example, a solution for the estimates coefficients of COCOMO models must be non-negative. In this research, we introduce a constrained regression technique that uses objective functions and constraints to estimate the coefficients of the COCOMO models. To access the performance of the proposed technique, we run a cross-validation procedure and compare the prediction accuracy from different approaches such as least squares, stepwise, Lasso, and Ridge regression. Our result suggests that the regression model that minimizes the sum of relative errors and imposes non-negative coefficients is a favorable technique for calibrating the COCOMO model parameters.","PeriodicalId":124452,"journal":{"name":"International Symposium on Empirical Software Engineering and Measurement","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"A constrained regression technique for cocomo calibration\",\"authors\":\"Vu Nguyen, Bert Steece, B. Boehm\",\"doi\":\"10.1145/1414004.1414040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building cost estimation models is often considered a search problem in which the solver should return an optimal solution satisfying an objective function. This solution also needs to meet certain constraints. For example, a solution for the estimates coefficients of COCOMO models must be non-negative. In this research, we introduce a constrained regression technique that uses objective functions and constraints to estimate the coefficients of the COCOMO models. To access the performance of the proposed technique, we run a cross-validation procedure and compare the prediction accuracy from different approaches such as least squares, stepwise, Lasso, and Ridge regression. Our result suggests that the regression model that minimizes the sum of relative errors and imposes non-negative coefficients is a favorable technique for calibrating the COCOMO model parameters.\",\"PeriodicalId\":124452,\"journal\":{\"name\":\"International Symposium on Empirical Software Engineering and Measurement\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Empirical Software Engineering and Measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1414004.1414040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Empirical Software Engineering and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1414004.1414040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

建筑成本估算模型通常被认为是一个搜索问题,求解器应该返回一个满足目标函数的最优解。此解决方案还需要满足某些约束。例如,COCOMO模型估计系数的解必须是非负的。在本研究中,我们引入了一种约束回归技术,使用目标函数和约束来估计COCOMO模型的系数。为了获得所提出的技术的性能,我们运行了一个交叉验证过程,并比较了不同方法(如最小二乘、逐步回归、Lasso和Ridge回归)的预测精度。我们的结果表明,最小的相对误差和施加非负系数的回归模型是校正COCOMO模型参数的一种有利技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A constrained regression technique for cocomo calibration
Building cost estimation models is often considered a search problem in which the solver should return an optimal solution satisfying an objective function. This solution also needs to meet certain constraints. For example, a solution for the estimates coefficients of COCOMO models must be non-negative. In this research, we introduce a constrained regression technique that uses objective functions and constraints to estimate the coefficients of the COCOMO models. To access the performance of the proposed technique, we run a cross-validation procedure and compare the prediction accuracy from different approaches such as least squares, stepwise, Lasso, and Ridge regression. Our result suggests that the regression model that minimizes the sum of relative errors and imposes non-negative coefficients is a favorable technique for calibrating the COCOMO model parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信