基于张量Tucker分解的降维后多普勒STAP方法

Jingya Li, Zhiwei Yang, Jiajia Gou
{"title":"基于张量Tucker分解的降维后多普勒STAP方法","authors":"Jingya Li, Zhiwei Yang, Jiajia Gou","doi":"10.1117/12.2655354","DOIUrl":null,"url":null,"abstract":"Space-time adaptive processing (STAP) can effectively suppress the clutter, which plays an important role in ground moving target indication (GMTI). However, it is difficult to obtain sufficient training samples with an increase in the number of spatial channels and adaptive processor dimensions in large arrays, especially in a complex geomagnetic detection environment. Traditional reduced-dimension STAP methods cannot offer significant benefits in real data processing in this issue. Thus, in this paper, a reduced-dimension post-Doppler STAP method based on tensor Tucker decomposition is proposed. Firstly, the distribution characteristics of the clutter spectrum in the post-Doppler domain are analyzed. Then, the feature spaces of beam and Doppler are extracted by tensor Tucker decomposition. Finally, the data dimension is reduced by the feature spaces, and clutter suppression is carried out. The results of the experiments based on real measured data demonstrate that the proposed method can achieve good performance with fewer samples than traditional methods.","PeriodicalId":105577,"journal":{"name":"International Conference on Signal Processing and Communication Security","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reduced-dimension post-Doppler STAP method based on tensor Tucker decomposition\",\"authors\":\"Jingya Li, Zhiwei Yang, Jiajia Gou\",\"doi\":\"10.1117/12.2655354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space-time adaptive processing (STAP) can effectively suppress the clutter, which plays an important role in ground moving target indication (GMTI). However, it is difficult to obtain sufficient training samples with an increase in the number of spatial channels and adaptive processor dimensions in large arrays, especially in a complex geomagnetic detection environment. Traditional reduced-dimension STAP methods cannot offer significant benefits in real data processing in this issue. Thus, in this paper, a reduced-dimension post-Doppler STAP method based on tensor Tucker decomposition is proposed. Firstly, the distribution characteristics of the clutter spectrum in the post-Doppler domain are analyzed. Then, the feature spaces of beam and Doppler are extracted by tensor Tucker decomposition. Finally, the data dimension is reduced by the feature spaces, and clutter suppression is carried out. The results of the experiments based on real measured data demonstrate that the proposed method can achieve good performance with fewer samples than traditional methods.\",\"PeriodicalId\":105577,\"journal\":{\"name\":\"International Conference on Signal Processing and Communication Security\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Signal Processing and Communication Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2655354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing and Communication Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2655354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空时自适应处理(STAP)能有效抑制杂波,在地面运动目标指示(GMTI)中起着重要作用。然而,在大型阵列中,特别是在复杂的地磁检测环境中,随着空间通道数量的增加和自适应处理器尺寸的增加,难以获得足够的训练样本。传统的降维STAP方法在实际数据处理中无法提供明显的优势。为此,本文提出了一种基于张量Tucker分解的降维后多普勒STAP方法。首先,分析了后多普勒域杂波谱的分布特征。然后,通过张量Tucker分解提取波束和多普勒特征空间;最后利用特征空间对数据进行降维,并进行杂波抑制。基于实际测量数据的实验结果表明,与传统方法相比,该方法可以在较少的样本下获得较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reduced-dimension post-Doppler STAP method based on tensor Tucker decomposition
Space-time adaptive processing (STAP) can effectively suppress the clutter, which plays an important role in ground moving target indication (GMTI). However, it is difficult to obtain sufficient training samples with an increase in the number of spatial channels and adaptive processor dimensions in large arrays, especially in a complex geomagnetic detection environment. Traditional reduced-dimension STAP methods cannot offer significant benefits in real data processing in this issue. Thus, in this paper, a reduced-dimension post-Doppler STAP method based on tensor Tucker decomposition is proposed. Firstly, the distribution characteristics of the clutter spectrum in the post-Doppler domain are analyzed. Then, the feature spaces of beam and Doppler are extracted by tensor Tucker decomposition. Finally, the data dimension is reduced by the feature spaces, and clutter suppression is carried out. The results of the experiments based on real measured data demonstrate that the proposed method can achieve good performance with fewer samples than traditional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信