多项式时间算法的无效证明

Paulo Oliva
{"title":"多项式时间算法的无效证明","authors":"Paulo Oliva","doi":"10.1109/LICS.2003.1210052","DOIUrl":null,"url":null,"abstract":"We present a constructive procedure for extracting polynomial-time realizers from ineffective proofs of /spl Pi//sub 2//sup 0/-theorems in feasible analysis. By ineffective proof we mean a proof which involves the noncomputational principle weak Konig's lemma WKL, and by feasible analysis we mean Cook and Urquhart's system CPV/sup /spl omega// plus quantifier-free choice QF-AC. We shall also discuss the relation between the system CPV/sup /spl omega// + QF-AC and Ferreira's base theory for feasible analysis BTFA, for which /spl Pi//sub 2//sup 0/-conservation of WKL has been non-constructively proven. This paper treats the case of weak Konig's lemma, we indicate how to formalize the proof of the Heine/Borel covering lemma in this system. The main techniques used in the paper are Godel's functional interpretation and a novel form of binary bar recursion.","PeriodicalId":280809,"journal":{"name":"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Polynomial-time algorithms from ineffective proofs\",\"authors\":\"Paulo Oliva\",\"doi\":\"10.1109/LICS.2003.1210052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a constructive procedure for extracting polynomial-time realizers from ineffective proofs of /spl Pi//sub 2//sup 0/-theorems in feasible analysis. By ineffective proof we mean a proof which involves the noncomputational principle weak Konig's lemma WKL, and by feasible analysis we mean Cook and Urquhart's system CPV/sup /spl omega// plus quantifier-free choice QF-AC. We shall also discuss the relation between the system CPV/sup /spl omega// + QF-AC and Ferreira's base theory for feasible analysis BTFA, for which /spl Pi//sub 2//sup 0/-conservation of WKL has been non-constructively proven. This paper treats the case of weak Konig's lemma, we indicate how to formalize the proof of the Heine/Borel covering lemma in this system. The main techniques used in the paper are Godel's functional interpretation and a novel form of binary bar recursion.\",\"PeriodicalId\":280809,\"journal\":{\"name\":\"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2003.1210052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2003.1210052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

给出了从可行分析中/spl Pi// sub2 //sup 0/-定理的无效证明中提取多项式时间实现器的构造过程。无效证明是指涉及非计算原理弱柯尼格引理WKL的证明,可行分析是指Cook和Urquhart的系统CPV/sup /spl //加上无量词选择QF-AC。讨论了系统CPV/sup /spl ω // + QF-AC与Ferreira可行分析基本理论BTFA之间的关系,其中/spl Pi//sub 2//sup 0/-守恒性得到了非建设性证明。本文讨论了弱Konig引理的情况,给出了如何形式化该系统中Heine/Borel覆盖引理的证明。本文使用的主要技术是哥德尔的泛函解释和一种新形式的二进制条递归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial-time algorithms from ineffective proofs
We present a constructive procedure for extracting polynomial-time realizers from ineffective proofs of /spl Pi//sub 2//sup 0/-theorems in feasible analysis. By ineffective proof we mean a proof which involves the noncomputational principle weak Konig's lemma WKL, and by feasible analysis we mean Cook and Urquhart's system CPV/sup /spl omega// plus quantifier-free choice QF-AC. We shall also discuss the relation between the system CPV/sup /spl omega// + QF-AC and Ferreira's base theory for feasible analysis BTFA, for which /spl Pi//sub 2//sup 0/-conservation of WKL has been non-constructively proven. This paper treats the case of weak Konig's lemma, we indicate how to formalize the proof of the Heine/Borel covering lemma in this system. The main techniques used in the paper are Godel's functional interpretation and a novel form of binary bar recursion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信