利用遗传算法优化预测人类注视的视觉注意模型

S. Naqvi, Will N. Browne, C. Hollitt
{"title":"利用遗传算法优化预测人类注视的视觉注意模型","authors":"S. Naqvi, Will N. Browne, C. Hollitt","doi":"10.1109/CEC.2013.6557715","DOIUrl":null,"url":null,"abstract":"Predicting where humans look in a scene is crucial in tasks like human-computer interaction, design, graphics, image and video compression, and gaze animation. This work proposes the use of a mixed-integer constraint Genetic Algorithm (GA) for searching the optimal parameters of a bio-inspired visual saliency model for accurate prediction of human eye fixations. Bioinspired visual saliency models are complex models, mimicking the primate visual system with a vast choice of design parameters that can be tuned to achieve optimal performance. The bottom-up visual attention model used in this study was trained on three challenging image datasets from the ImgSal database using a standard performance metric (area under Receiver Operating Characteristic curve) as the fitness. To compensate for any bias of the optimized model towards the standard metric, we use two other scoring metrics to assess performance. Performance comparisons with eight state-of-the-art models have been presented for all three scoring metrics. Results show that the proposed GA optimized visual attention model provides better prediction performance than several state-of-the-art models of visual attention.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimizing visual attention models for predicting human fixations using Genetic Algorithms\",\"authors\":\"S. Naqvi, Will N. Browne, C. Hollitt\",\"doi\":\"10.1109/CEC.2013.6557715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting where humans look in a scene is crucial in tasks like human-computer interaction, design, graphics, image and video compression, and gaze animation. This work proposes the use of a mixed-integer constraint Genetic Algorithm (GA) for searching the optimal parameters of a bio-inspired visual saliency model for accurate prediction of human eye fixations. Bioinspired visual saliency models are complex models, mimicking the primate visual system with a vast choice of design parameters that can be tuned to achieve optimal performance. The bottom-up visual attention model used in this study was trained on three challenging image datasets from the ImgSal database using a standard performance metric (area under Receiver Operating Characteristic curve) as the fitness. To compensate for any bias of the optimized model towards the standard metric, we use two other scoring metrics to assess performance. Performance comparisons with eight state-of-the-art models have been presented for all three scoring metrics. Results show that the proposed GA optimized visual attention model provides better prediction performance than several state-of-the-art models of visual attention.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"2016 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在人机交互、设计、图形、图像和视频压缩以及凝视动画等任务中,预测人类在场景中的视线是至关重要的。这项工作提出使用混合整数约束遗传算法(GA)来搜索生物视觉显著性模型的最佳参数,以准确预测人眼注视。生物启发的视觉显著性模型是复杂的模型,模仿灵长类动物的视觉系统,具有大量的设计参数选择,可以调整以达到最佳性能。本研究中使用的自下而上的视觉注意模型是在来自ImgSal数据库的三个具有挑战性的图像数据集上使用标准性能度量(Receiver Operating Characteristic curve下面积)作为适应度进行训练的。为了补偿优化模型对标准度量的任何偏差,我们使用另外两个评分度量来评估性能。对所有三个评分指标与八种最先进的模型进行了性能比较。结果表明,遗传算法优化的视觉注意模型比现有的几种视觉注意模型具有更好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing visual attention models for predicting human fixations using Genetic Algorithms
Predicting where humans look in a scene is crucial in tasks like human-computer interaction, design, graphics, image and video compression, and gaze animation. This work proposes the use of a mixed-integer constraint Genetic Algorithm (GA) for searching the optimal parameters of a bio-inspired visual saliency model for accurate prediction of human eye fixations. Bioinspired visual saliency models are complex models, mimicking the primate visual system with a vast choice of design parameters that can be tuned to achieve optimal performance. The bottom-up visual attention model used in this study was trained on three challenging image datasets from the ImgSal database using a standard performance metric (area under Receiver Operating Characteristic curve) as the fitness. To compensate for any bias of the optimized model towards the standard metric, we use two other scoring metrics to assess performance. Performance comparisons with eight state-of-the-art models have been presented for all three scoring metrics. Results show that the proposed GA optimized visual attention model provides better prediction performance than several state-of-the-art models of visual attention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信