迈向混合Gröbner基算法:多齐次和稀疏情况

M. Bender, J. Faugère, Elias P. Tsigaridas
{"title":"迈向混合Gröbner基算法:多齐次和稀疏情况","authors":"M. Bender, J. Faugère, Elias P. Tsigaridas","doi":"10.1145/3208976.3209018","DOIUrl":null,"url":null,"abstract":"One of the biggest open problems in computational algebra is the design of efficient algorithms for Gröbner basis computations that take into account the sparsity of the input polynomials. We can perform such computations in the case of unmixed polynomial systems, that is systems with polynomials having the same support, using the approach of Faugère, Spaenlehauer, and Svartz [ISSAC'14]. We present two algorithms for sparse Gröbner bases computations for mixed systems. The first one computes with mixed sparse systems and exploits the supports of the polynomials. Under regularity assumptions, it performs no reductions to zero. For mixed, square, and 0-dimensional multihomogeneous polynomial systems, we present a dedicated, and potentially more efficient, algorithm that exploits different algebraic properties that performs no reduction to zero. We give an explicit bound for the maximal degree appearing in the computations.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Towards Mixed Gröbner Basis Algorithms: the Multihomogeneous and Sparse Case\",\"authors\":\"M. Bender, J. Faugère, Elias P. Tsigaridas\",\"doi\":\"10.1145/3208976.3209018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the biggest open problems in computational algebra is the design of efficient algorithms for Gröbner basis computations that take into account the sparsity of the input polynomials. We can perform such computations in the case of unmixed polynomial systems, that is systems with polynomials having the same support, using the approach of Faugère, Spaenlehauer, and Svartz [ISSAC'14]. We present two algorithms for sparse Gröbner bases computations for mixed systems. The first one computes with mixed sparse systems and exploits the supports of the polynomials. Under regularity assumptions, it performs no reductions to zero. For mixed, square, and 0-dimensional multihomogeneous polynomial systems, we present a dedicated, and potentially more efficient, algorithm that exploits different algebraic properties that performs no reduction to zero. We give an explicit bound for the maximal degree appearing in the computations.\",\"PeriodicalId\":105762,\"journal\":{\"name\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208976.3209018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

计算代数中最大的开放问题之一是为考虑输入多项式的稀疏性的Gröbner基计算设计有效的算法。我们可以使用faugires, Spaenlehauer和Svartz [ISSAC'14]的方法,在非混合多项式系统(即多项式具有相同支持度的系统)的情况下执行此类计算。提出了两种用于混合系统的稀疏Gröbner基计算的算法。第一种方法使用混合稀疏系统进行计算,利用多项式的支持度。在正则性假设下,它不执行归零。对于混合、平方和0维多齐次多项式系统,我们提出了一种专用的、可能更有效的算法,该算法利用不同的代数性质,不执行归零。给出了计算中出现的最大次的显式界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Mixed Gröbner Basis Algorithms: the Multihomogeneous and Sparse Case
One of the biggest open problems in computational algebra is the design of efficient algorithms for Gröbner basis computations that take into account the sparsity of the input polynomials. We can perform such computations in the case of unmixed polynomial systems, that is systems with polynomials having the same support, using the approach of Faugère, Spaenlehauer, and Svartz [ISSAC'14]. We present two algorithms for sparse Gröbner bases computations for mixed systems. The first one computes with mixed sparse systems and exploits the supports of the polynomials. Under regularity assumptions, it performs no reductions to zero. For mixed, square, and 0-dimensional multihomogeneous polynomial systems, we present a dedicated, and potentially more efficient, algorithm that exploits different algebraic properties that performs no reduction to zero. We give an explicit bound for the maximal degree appearing in the computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信