用保形参数化计算曲率

Jeffrey Kwan, L. Lui, Yalin Wang, S. Yau
{"title":"用保形参数化计算曲率","authors":"Jeffrey Kwan, L. Lui, Yalin Wang, S. Yau","doi":"10.4310/CIS.2008.V8.N1.A1","DOIUrl":null,"url":null,"abstract":"Curvatures on the surface are important geometric invariants and are widely used in different area of research. Examples include feature recognition, segmentation, or shape analysis. Therefore, it is of interest to develop an effective algorithm to approximate the curvatures accurately. The classical methods to compute these quantities involve the estimation of the normal and some involve the computation of the second derivatives of the 3 coordinate functions under the parameterization. Error is inevitably introduced because of the inaccurate approximation of the second derivatives and the normal. In this paper, we propose several novel methods to compute curvatures on the surface using the conformal parameterization. With the conformal parameterization, the conformal factor function λ can be defined on the surface. Mean curvature (H) and Gaussian curvatures (K) can then be computed with the conformal Factor (λ). It involves computing only the derivatives of the function λ, instead of the 3 coordinate functions and the normal. We also introduce a technique to compute H from K and vice versa, using the parallel surface.","PeriodicalId":185710,"journal":{"name":"Commun. Inf. Syst.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Computation of curvatures using conformal parameterization\",\"authors\":\"Jeffrey Kwan, L. Lui, Yalin Wang, S. Yau\",\"doi\":\"10.4310/CIS.2008.V8.N1.A1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Curvatures on the surface are important geometric invariants and are widely used in different area of research. Examples include feature recognition, segmentation, or shape analysis. Therefore, it is of interest to develop an effective algorithm to approximate the curvatures accurately. The classical methods to compute these quantities involve the estimation of the normal and some involve the computation of the second derivatives of the 3 coordinate functions under the parameterization. Error is inevitably introduced because of the inaccurate approximation of the second derivatives and the normal. In this paper, we propose several novel methods to compute curvatures on the surface using the conformal parameterization. With the conformal parameterization, the conformal factor function λ can be defined on the surface. Mean curvature (H) and Gaussian curvatures (K) can then be computed with the conformal Factor (λ). It involves computing only the derivatives of the function λ, instead of the 3 coordinate functions and the normal. We also introduce a technique to compute H from K and vice versa, using the parallel surface.\",\"PeriodicalId\":185710,\"journal\":{\"name\":\"Commun. Inf. Syst.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commun. Inf. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/CIS.2008.V8.N1.A1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commun. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CIS.2008.V8.N1.A1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

曲面曲率是重要的几何不变量,广泛应用于不同的研究领域。例子包括特征识别、分割或形状分析。因此,开发一种有效的算法来精确地逼近曲率是很有意义的。计算这些量的经典方法涉及到正态估计,有些涉及到参数化下3个坐标函数的二阶导数的计算。由于二阶导数和正态曲线的近似不准确,误差不可避免地会出现。本文提出了几种利用保形参数化计算曲面曲率的新方法。利用保形参数化,可以在曲面上定义保形因子函数λ。平均曲率(H)和高斯曲率(K)可以用保形因子(λ)计算。它只涉及计算函数λ的导数,而不是3个坐标函数和法线。我们还介绍了一种利用平行曲面从K计算H,反之亦然的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of curvatures using conformal parameterization
Curvatures on the surface are important geometric invariants and are widely used in different area of research. Examples include feature recognition, segmentation, or shape analysis. Therefore, it is of interest to develop an effective algorithm to approximate the curvatures accurately. The classical methods to compute these quantities involve the estimation of the normal and some involve the computation of the second derivatives of the 3 coordinate functions under the parameterization. Error is inevitably introduced because of the inaccurate approximation of the second derivatives and the normal. In this paper, we propose several novel methods to compute curvatures on the surface using the conformal parameterization. With the conformal parameterization, the conformal factor function λ can be defined on the surface. Mean curvature (H) and Gaussian curvatures (K) can then be computed with the conformal Factor (λ). It involves computing only the derivatives of the function λ, instead of the 3 coordinate functions and the normal. We also introduce a technique to compute H from K and vice versa, using the parallel surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信