利用脑电图外周通道预测癫痫发作

Carolina Salvador, Virginie Felizardo, Henriques Zacarias, Leonice Souza-Pereira, Mehran Pourvahab, Nuno Pombo, N. Garcia
{"title":"利用脑电图外周通道预测癫痫发作","authors":"Carolina Salvador, Virginie Felizardo, Henriques Zacarias, Leonice Souza-Pereira, Mehran Pourvahab, Nuno Pombo, N. Garcia","doi":"10.1109/ENBENG58165.2023.10175347","DOIUrl":null,"url":null,"abstract":"Epilepsy is a neurological disease that causes uncontrollable seizures that can lead to severe or even lethal damage to the patient. This paper proposes an approach to predict epileptic seizures using peripheral electroencephalogram (EEG) channels from the CHB-MIT dataset. We created a machine learning algorithm to classify between interictal and preictal stages of seizures. The main goal is to assess the possibility of predicting these events using only peripheral channels and to present results for different configurations, such as the number of channels and their combinations. The preliminary performance of the algorithms is promising, with results similar to those in the literature that rely on channel reduction.","PeriodicalId":125330,"journal":{"name":"2023 IEEE 7th Portuguese Meeting on Bioengineering (ENBENG)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Epileptic seizure prediction using EEG peripheral channels\",\"authors\":\"Carolina Salvador, Virginie Felizardo, Henriques Zacarias, Leonice Souza-Pereira, Mehran Pourvahab, Nuno Pombo, N. Garcia\",\"doi\":\"10.1109/ENBENG58165.2023.10175347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy is a neurological disease that causes uncontrollable seizures that can lead to severe or even lethal damage to the patient. This paper proposes an approach to predict epileptic seizures using peripheral electroencephalogram (EEG) channels from the CHB-MIT dataset. We created a machine learning algorithm to classify between interictal and preictal stages of seizures. The main goal is to assess the possibility of predicting these events using only peripheral channels and to present results for different configurations, such as the number of channels and their combinations. The preliminary performance of the algorithms is promising, with results similar to those in the literature that rely on channel reduction.\",\"PeriodicalId\":125330,\"journal\":{\"name\":\"2023 IEEE 7th Portuguese Meeting on Bioengineering (ENBENG)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 7th Portuguese Meeting on Bioengineering (ENBENG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENBENG58165.2023.10175347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 7th Portuguese Meeting on Bioengineering (ENBENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENBENG58165.2023.10175347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

癫痫是一种神经系统疾病,会导致无法控制的癫痫发作,对患者造成严重甚至致命的伤害。本文提出了一种利用CHB-MIT数据集的外周脑电图(EEG)通道预测癫痫发作的方法。我们创建了一个机器学习算法来区分癫痫发作的间歇期和预产期。主要目标是评估仅使用外围通道预测这些事件的可能性,并给出不同配置的结果,例如通道的数量及其组合。这些算法的初步性能是有希望的,其结果与文献中依赖信道约简的结果相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epileptic seizure prediction using EEG peripheral channels
Epilepsy is a neurological disease that causes uncontrollable seizures that can lead to severe or even lethal damage to the patient. This paper proposes an approach to predict epileptic seizures using peripheral electroencephalogram (EEG) channels from the CHB-MIT dataset. We created a machine learning algorithm to classify between interictal and preictal stages of seizures. The main goal is to assess the possibility of predicting these events using only peripheral channels and to present results for different configurations, such as the number of channels and their combinations. The preliminary performance of the algorithms is promising, with results similar to those in the literature that rely on channel reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信