基于自编码器和深度神经网络的船用柴油机能耗分析

Defu Zhang, Kangli Wang, Jianfeng Gao, Xiuming Che
{"title":"基于自编码器和深度神经网络的船用柴油机能耗分析","authors":"Defu Zhang, Kangli Wang, Jianfeng Gao, Xiuming Che","doi":"10.1109/ICMA54519.2022.9856051","DOIUrl":null,"url":null,"abstract":"In order to improve the intelligent energy efficiency management of ships, evaluate the fuel utilization efficiency of marine diesel engine. In this paper, a fuel consumption model of marine diesel engine based on autoencoder and deep neural network is established, and the autoencoder is used to perform nonlinear dimensionality reduction on the data to obtain more valuable data features, thereby improving the accuracy of the model. The model is verified and compared using the sailing parameters, environmental parameters and fuel consumption of the actual ship during normal sailing. The accuracy rate of the model established in this paper reaches 95.19%, and the results show that the model in this paper can meet the prediction and evaluation analysis of the energy consumption of the marine diesel engine.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autoencoder and Deep Neural Network based Energy Consumption Analysis of Marine Diesel Engine\",\"authors\":\"Defu Zhang, Kangli Wang, Jianfeng Gao, Xiuming Che\",\"doi\":\"10.1109/ICMA54519.2022.9856051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the intelligent energy efficiency management of ships, evaluate the fuel utilization efficiency of marine diesel engine. In this paper, a fuel consumption model of marine diesel engine based on autoencoder and deep neural network is established, and the autoencoder is used to perform nonlinear dimensionality reduction on the data to obtain more valuable data features, thereby improving the accuracy of the model. The model is verified and compared using the sailing parameters, environmental parameters and fuel consumption of the actual ship during normal sailing. The accuracy rate of the model established in this paper reaches 95.19%, and the results show that the model in this paper can meet the prediction and evaluation analysis of the energy consumption of the marine diesel engine.\",\"PeriodicalId\":120073,\"journal\":{\"name\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA54519.2022.9856051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9856051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高船舶智能化能效管理水平,对船用柴油机的燃油利用效率进行了评估。本文建立了基于自编码器和深度神经网络的船用柴油机油耗模型,利用自编码器对数据进行非线性降维,获得更多有价值的数据特征,从而提高了模型的精度。利用实际船舶正常航行时的航行参数、环境参数和燃油消耗量对模型进行了验证和比较。所建立的模型准确率达到95.19%,结果表明,所建立的模型能够满足船用柴油机能耗的预测与评价分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autoencoder and Deep Neural Network based Energy Consumption Analysis of Marine Diesel Engine
In order to improve the intelligent energy efficiency management of ships, evaluate the fuel utilization efficiency of marine diesel engine. In this paper, a fuel consumption model of marine diesel engine based on autoencoder and deep neural network is established, and the autoencoder is used to perform nonlinear dimensionality reduction on the data to obtain more valuable data features, thereby improving the accuracy of the model. The model is verified and compared using the sailing parameters, environmental parameters and fuel consumption of the actual ship during normal sailing. The accuracy rate of the model established in this paper reaches 95.19%, and the results show that the model in this paper can meet the prediction and evaluation analysis of the energy consumption of the marine diesel engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信