DB-MVSNet:无监督多视图三维重建算法

Jiguang Zheng, Simeng Li, Yasir A. Khan, Yao Li, Hongqiang Lyu, Honggang Wang
{"title":"DB-MVSNet:无监督多视图三维重建算法","authors":"Jiguang Zheng, Simeng Li, Yasir A. Khan, Yao Li, Hongqiang Lyu, Honggang Wang","doi":"10.1109/INFOTEH57020.2023.10094116","DOIUrl":null,"url":null,"abstract":"Supervised Multi-view 3D reconstruction algorithm based on ground truth data has great limitations in data acquisition cost and method promotion. Several unsupervised 3D reconstruction algorithms have even achieved similar results with supervised MVSNet series algorithms. We continue the work on the basis of previous research. Our DB-MVSNet includes two main tasks: first, the model introduces two parallel branches including depth estimation branch and semantic cluster branch. Secondly, we introduce normal depth in depth estimation branch, and adopt NNet network to realize the consistent propagation. The experimental results show that DB-MVSNet improves the overall performance of unsupervised 3D reconstruction algorithm.","PeriodicalId":287923,"journal":{"name":"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DB-MVSNet: Unsupervised multi-view 3D reconstruction algorithm with two branches\",\"authors\":\"Jiguang Zheng, Simeng Li, Yasir A. Khan, Yao Li, Hongqiang Lyu, Honggang Wang\",\"doi\":\"10.1109/INFOTEH57020.2023.10094116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supervised Multi-view 3D reconstruction algorithm based on ground truth data has great limitations in data acquisition cost and method promotion. Several unsupervised 3D reconstruction algorithms have even achieved similar results with supervised MVSNet series algorithms. We continue the work on the basis of previous research. Our DB-MVSNet includes two main tasks: first, the model introduces two parallel branches including depth estimation branch and semantic cluster branch. Secondly, we introduce normal depth in depth estimation branch, and adopt NNet network to realize the consistent propagation. The experimental results show that DB-MVSNet improves the overall performance of unsupervised 3D reconstruction algorithm.\",\"PeriodicalId\":287923,\"journal\":{\"name\":\"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOTEH57020.2023.10094116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH57020.2023.10094116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于地真数据的监督式多视图三维重建算法在数据采集成本和方法推广方面存在很大的局限性。几种无监督三维重建算法甚至取得了与有监督MVSNet系列算法相似的结果。我们在先前研究的基础上继续这项工作。我们的DB-MVSNet包括两个主要任务:首先,模型引入了深度估计分支和语义聚类分支两个并行分支。其次,在深度估计分支中引入标准深度,采用NNet网络实现一致性传播;实验结果表明,DB-MVSNet提高了无监督三维重建算法的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DB-MVSNet: Unsupervised multi-view 3D reconstruction algorithm with two branches
Supervised Multi-view 3D reconstruction algorithm based on ground truth data has great limitations in data acquisition cost and method promotion. Several unsupervised 3D reconstruction algorithms have even achieved similar results with supervised MVSNet series algorithms. We continue the work on the basis of previous research. Our DB-MVSNet includes two main tasks: first, the model introduces two parallel branches including depth estimation branch and semantic cluster branch. Secondly, we introduce normal depth in depth estimation branch, and adopt NNet network to realize the consistent propagation. The experimental results show that DB-MVSNet improves the overall performance of unsupervised 3D reconstruction algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信