仿射动力系统的符号/数值控制算法

A. Rondepierre, J. Dumas
{"title":"仿射动力系统的符号/数值控制算法","authors":"A. Rondepierre, J. Dumas","doi":"10.1145/1073884.1073923","DOIUrl":null,"url":null,"abstract":"We consider a general linear dynamical system and want to control its behavior. The goal is to reach a given target by minimizing a cost function. We provide a new generic algorithm with together exact, symbolic and numerical modules. In particular new efficient methods computing a block Kalman canonical exact decomposition and the optimal solutions are presented. We also propose a new numerical algorithm under-approximating the controllable domain in view of its analytical resolution in the context of singular sub-arcs.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Algorithms for symbolic/numeric control of affine dynamical systems\",\"authors\":\"A. Rondepierre, J. Dumas\",\"doi\":\"10.1145/1073884.1073923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a general linear dynamical system and want to control its behavior. The goal is to reach a given target by minimizing a cost function. We provide a new generic algorithm with together exact, symbolic and numerical modules. In particular new efficient methods computing a block Kalman canonical exact decomposition and the optimal solutions are presented. We also propose a new numerical algorithm under-approximating the controllable domain in view of its analytical resolution in the context of singular sub-arcs.\",\"PeriodicalId\":311546,\"journal\":{\"name\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1073884.1073923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们考虑一个一般的线性动力系统,想要控制它的行为。目标是通过最小化成本函数来达到给定的目标。提出了一种具有精确模块、符号模块和数值模块的通用算法。特别是给出了计算块卡尔曼正则精确分解和最优解的新方法。鉴于其在奇异子弧情况下的解析分辨率,我们还提出了一种新的欠逼近可控域的数值算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for symbolic/numeric control of affine dynamical systems
We consider a general linear dynamical system and want to control its behavior. The goal is to reach a given target by minimizing a cost function. We provide a new generic algorithm with together exact, symbolic and numerical modules. In particular new efficient methods computing a block Kalman canonical exact decomposition and the optimal solutions are presented. We also propose a new numerical algorithm under-approximating the controllable domain in view of its analytical resolution in the context of singular sub-arcs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信