基于灵敏度的(p, α, k) -匿名隐私保护算法

Suming Chen, Bin Wang, Yuquan Chen, Yuhui Ma, Tao Xing, Jianli Zhao
{"title":"基于灵敏度的(p, α, k) -匿名隐私保护算法","authors":"Suming Chen, Bin Wang, Yuquan Chen, Yuhui Ma, Tao Xing, Jianli Zhao","doi":"10.1109/CCAI57533.2023.10201294","DOIUrl":null,"url":null,"abstract":"Medical data itself has extremely high research value, but how to protect its privacy and security in the process of sharing medical data has attracted widespread attention from researchers. Aiming at the problems of homogeneity attack, background knowledge attack and high-sensitivity similarity attack in data sharing of k -anonymity privacy protection algorithm, a sensitivity-based (p, α, k) -anonymity privacy protection algorithm is proposed. The concept of semantic similarity tree is introduced, which can resist background knowledge attacks. The improved clustering method of equivalence classes can solve homogeneity attacks and high-sensitivity similarity attacks. Thus, the security of medical data sharing can be realized. Experiments show that (p, α, k) - anonymity privacy protection algorithm has the best performance when α is equal to 0.5. In addition, compared with k -anonymity privacy protection algorithm, although (p, α, k) - anonymity privacy protection algorithm has higher execution time and information loss, it effectively solves the problems of k - anonymity algorithm and improves the security of medical data sharing.","PeriodicalId":285760,"journal":{"name":"2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence (CCAI)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity-based (p, α, k) - Anonymity Privacy Protection Algorithm\",\"authors\":\"Suming Chen, Bin Wang, Yuquan Chen, Yuhui Ma, Tao Xing, Jianli Zhao\",\"doi\":\"10.1109/CCAI57533.2023.10201294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical data itself has extremely high research value, but how to protect its privacy and security in the process of sharing medical data has attracted widespread attention from researchers. Aiming at the problems of homogeneity attack, background knowledge attack and high-sensitivity similarity attack in data sharing of k -anonymity privacy protection algorithm, a sensitivity-based (p, α, k) -anonymity privacy protection algorithm is proposed. The concept of semantic similarity tree is introduced, which can resist background knowledge attacks. The improved clustering method of equivalence classes can solve homogeneity attacks and high-sensitivity similarity attacks. Thus, the security of medical data sharing can be realized. Experiments show that (p, α, k) - anonymity privacy protection algorithm has the best performance when α is equal to 0.5. In addition, compared with k -anonymity privacy protection algorithm, although (p, α, k) - anonymity privacy protection algorithm has higher execution time and information loss, it effectively solves the problems of k - anonymity algorithm and improves the security of medical data sharing.\",\"PeriodicalId\":285760,\"journal\":{\"name\":\"2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence (CCAI)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence (CCAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCAI57533.2023.10201294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence (CCAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAI57533.2023.10201294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医疗数据本身具有极高的研究价值,但如何在医疗数据共享的过程中保护其隐私和安全,引起了研究者的广泛关注。针对k -匿名隐私保护算法在数据共享中存在的同质性攻击、背景知识攻击和高灵敏度相似度攻击等问题,提出了一种基于灵敏度的(p, α, k) -匿名隐私保护算法。引入了语义相似树的概念,可以抵抗背景知识攻击。改进的等价类聚类方法可以解决同质性攻击和高灵敏度相似性攻击。从而实现医疗数据共享的安全性。实验表明,(p, α, k) -匿名隐私保护算法在α = 0.5时性能最佳。此外,与k -匿名隐私保护算法相比,(p, α, k) -匿名隐私保护算法虽然具有更高的执行时间和信息损失,但它有效地解决了k -匿名算法存在的问题,提高了医疗数据共享的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity-based (p, α, k) - Anonymity Privacy Protection Algorithm
Medical data itself has extremely high research value, but how to protect its privacy and security in the process of sharing medical data has attracted widespread attention from researchers. Aiming at the problems of homogeneity attack, background knowledge attack and high-sensitivity similarity attack in data sharing of k -anonymity privacy protection algorithm, a sensitivity-based (p, α, k) -anonymity privacy protection algorithm is proposed. The concept of semantic similarity tree is introduced, which can resist background knowledge attacks. The improved clustering method of equivalence classes can solve homogeneity attacks and high-sensitivity similarity attacks. Thus, the security of medical data sharing can be realized. Experiments show that (p, α, k) - anonymity privacy protection algorithm has the best performance when α is equal to 0.5. In addition, compared with k -anonymity privacy protection algorithm, although (p, α, k) - anonymity privacy protection algorithm has higher execution time and information loss, it effectively solves the problems of k - anonymity algorithm and improves the security of medical data sharing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信