学习分辨特异性、自协作和非线性模型

Dimche Kostadinov, Behrooz Razeghi, S. Voloshynovskiy, Sohrab Ferdowsi
{"title":"学习分辨特异性、自协作和非线性模型","authors":"Dimche Kostadinov, Behrooz Razeghi, S. Voloshynovskiy, Sohrab Ferdowsi","doi":"10.1109/ICBK.2018.00048","DOIUrl":null,"url":null,"abstract":"This paper presents a novel nonlinear transform model for learning of collaboration structured, discriminative and sparse representations. The idea is to model a collaboration corrective functionality between multiple nonlinear transforms in order to reduce the uncertainty in the estimate. The focus is on the joint estimation of data-adaptive nonlinear transforms (NTs) that take into account a collaboration component w.r.t. a discrimination target. The joint model includes minimum information loss, collaboration corrective and discriminative priors. The model parameters are learned by minimizing an approximation to the empirical negative log likelihood of the model, where we propose an efficient solution by an iterative, coordinate descent algorithm. Numerical experiments validate the potential of the learning principle. The preliminary results show advantages in comparison to the stateof-the-art methods, w.r.t. the learning time, the discriminative quality and the recognition accuracy.","PeriodicalId":144958,"journal":{"name":"2018 IEEE International Conference on Big Knowledge (ICBK)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Discrimination Specific, Self-Collaborative and Nonlinear Model\",\"authors\":\"Dimche Kostadinov, Behrooz Razeghi, S. Voloshynovskiy, Sohrab Ferdowsi\",\"doi\":\"10.1109/ICBK.2018.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel nonlinear transform model for learning of collaboration structured, discriminative and sparse representations. The idea is to model a collaboration corrective functionality between multiple nonlinear transforms in order to reduce the uncertainty in the estimate. The focus is on the joint estimation of data-adaptive nonlinear transforms (NTs) that take into account a collaboration component w.r.t. a discrimination target. The joint model includes minimum information loss, collaboration corrective and discriminative priors. The model parameters are learned by minimizing an approximation to the empirical negative log likelihood of the model, where we propose an efficient solution by an iterative, coordinate descent algorithm. Numerical experiments validate the potential of the learning principle. The preliminary results show advantages in comparison to the stateof-the-art methods, w.r.t. the learning time, the discriminative quality and the recognition accuracy.\",\"PeriodicalId\":144958,\"journal\":{\"name\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2018.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2018.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种用于协作、结构化、判别和稀疏表示学习的非线性转换模型。其思想是对多个非线性变换之间的协作校正函数进行建模,以减少估计中的不确定性。重点是考虑协同分量而非识别目标的数据自适应非线性变换的联合估计。联合模型包括最小信息损失、协作纠错和判别先验。模型参数是通过最小化模型的经验负对数似然的近似值来学习的,我们通过迭代的坐标下降算法提出了一个有效的解决方案。数值实验验证了该学习原理的潜力。初步结果表明,该方法在学习时间、识别质量和识别精度等方面均优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Discrimination Specific, Self-Collaborative and Nonlinear Model
This paper presents a novel nonlinear transform model for learning of collaboration structured, discriminative and sparse representations. The idea is to model a collaboration corrective functionality between multiple nonlinear transforms in order to reduce the uncertainty in the estimate. The focus is on the joint estimation of data-adaptive nonlinear transforms (NTs) that take into account a collaboration component w.r.t. a discrimination target. The joint model includes minimum information loss, collaboration corrective and discriminative priors. The model parameters are learned by minimizing an approximation to the empirical negative log likelihood of the model, where we propose an efficient solution by an iterative, coordinate descent algorithm. Numerical experiments validate the potential of the learning principle. The preliminary results show advantages in comparison to the stateof-the-art methods, w.r.t. the learning time, the discriminative quality and the recognition accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信