基于web的动态集群对家庭企业数据分类的应用

Hadi Santoso, Hilyah Magdalena, Helna Wardhana
{"title":"基于web的动态集群对家庭企业数据分类的应用","authors":"Hadi Santoso, Hilyah Magdalena, Helna Wardhana","doi":"10.30812/matrik.v21i3.1720","DOIUrl":null,"url":null,"abstract":"Masalah utama yang dihadapi Pemerintah Daerah Provinsi Kepulauan Bangka Belitung saat ini adalah sulitnya mengklasifikasikan data industri rumahan berdasarkan Peraturan Menteri PPPA No 2 Tahun 2016 yaitu pemula, berkembang dan maju. Berdasarkan permasalahan tersebut diusulkan pengembangan algoritma Kmeans yaitu algoritma Dynamic cluster pada K-means dengan tujuan agar dapat menghasilkan klaster yang optimal dalam pengelompokan data industri rumahan dengan membangun aplikasi cerdas berbasis web. Penelitian ini menggunakan metode analisis data mining SEMMA, yang meliputi tahapan-tahapan seperti data sampel, deskripsi data, transformasi data, pemodelan data, dan evaluasi data. 3.466 industri rumah tangga digunakan sebagai sampel data. Kinerja algoritma dievaluasi menggunakan pengukuran validitas klaster Davies Bouldin Index (DBI). Hasil eksperimen menunjukkan bahwa algoritma Dynamic cluster pada K-means memberikan nilai yang optimal pada iterasi ke lima, dengan perolehan sebagai berikut: klaster pemula (C1) diperoleh sebanyak 3214, kemudian klaster berkembang (C2) diperoleh sebanyak 167 dan klaster maju (C3) diperoleh sebanyak 85. Hasil evaluasi validitas klaster menunjukan bahwa algoritma Dynamic cluster pada Kmeans memperoleh nilai DBI lebih kecil dibandingkan dengan algoritma K-means dengan nilai DBI sebesar 0.184. Implementasi algoritma dynamic cluster pada K-means untuk pengelompokan data industri rumahan pada Dinas P3ACSKB di Provinsi Kepulauan Bangka Belitung terbukti menghasilkan kualitas cluster yang lebih optimal.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aplikasi Dynamic Cluster pada K-Means BerbasisWeb untuk Klasifikasi Data Industri Rumahan\",\"authors\":\"Hadi Santoso, Hilyah Magdalena, Helna Wardhana\",\"doi\":\"10.30812/matrik.v21i3.1720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Masalah utama yang dihadapi Pemerintah Daerah Provinsi Kepulauan Bangka Belitung saat ini adalah sulitnya mengklasifikasikan data industri rumahan berdasarkan Peraturan Menteri PPPA No 2 Tahun 2016 yaitu pemula, berkembang dan maju. Berdasarkan permasalahan tersebut diusulkan pengembangan algoritma Kmeans yaitu algoritma Dynamic cluster pada K-means dengan tujuan agar dapat menghasilkan klaster yang optimal dalam pengelompokan data industri rumahan dengan membangun aplikasi cerdas berbasis web. Penelitian ini menggunakan metode analisis data mining SEMMA, yang meliputi tahapan-tahapan seperti data sampel, deskripsi data, transformasi data, pemodelan data, dan evaluasi data. 3.466 industri rumah tangga digunakan sebagai sampel data. Kinerja algoritma dievaluasi menggunakan pengukuran validitas klaster Davies Bouldin Index (DBI). Hasil eksperimen menunjukkan bahwa algoritma Dynamic cluster pada K-means memberikan nilai yang optimal pada iterasi ke lima, dengan perolehan sebagai berikut: klaster pemula (C1) diperoleh sebanyak 3214, kemudian klaster berkembang (C2) diperoleh sebanyak 167 dan klaster maju (C3) diperoleh sebanyak 85. Hasil evaluasi validitas klaster menunjukan bahwa algoritma Dynamic cluster pada Kmeans memperoleh nilai DBI lebih kecil dibandingkan dengan algoritma K-means dengan nilai DBI sebesar 0.184. Implementasi algoritma dynamic cluster pada K-means untuk pengelompokan data industri rumahan pada Dinas P3ACSKB di Provinsi Kepulauan Bangka Belitung terbukti menghasilkan kualitas cluster yang lebih optimal.\",\"PeriodicalId\":364657,\"journal\":{\"name\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30812/matrik.v21i3.1720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v21i3.1720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

邦邦里通省政府目前面临的主要问题是,根据2016年首席部长PPPA 2号的初创企业、新兴企业等规章制度,很难对家庭产业进行分类。根据这些问题提出Kmeans即算法算法开发动态集群的K-means才能产生最佳的丛集性数据分组的目的是家庭手工业和正在开发基于web的智能应用。这项研究数据挖掘SEMMA分析方法的使用,包括像样本,描述数据的流逝、转变、数据建模和评估数据。3.466家政行业作为样本数据。绩效评估算法使用测量戴维斯丛集性Bouldin指数(DBI)的有效性。实验结果表明,在K-means上的动态集群算法给出了第5次重复的最佳值,结果是:第一个集群(C1)获得了3214次,然后集群发展到167次,然后集群发展到85次。聚类有效性的评估表明,在k失踪患者中,动态集群的算法获得的DBI值比。动态集群算法的实现是k -均值,目的是将客家行业数据对邦邦利翁省的P3ACSKB服务进行集群,这被证明能产生更理想的集群质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aplikasi Dynamic Cluster pada K-Means BerbasisWeb untuk Klasifikasi Data Industri Rumahan
Masalah utama yang dihadapi Pemerintah Daerah Provinsi Kepulauan Bangka Belitung saat ini adalah sulitnya mengklasifikasikan data industri rumahan berdasarkan Peraturan Menteri PPPA No 2 Tahun 2016 yaitu pemula, berkembang dan maju. Berdasarkan permasalahan tersebut diusulkan pengembangan algoritma Kmeans yaitu algoritma Dynamic cluster pada K-means dengan tujuan agar dapat menghasilkan klaster yang optimal dalam pengelompokan data industri rumahan dengan membangun aplikasi cerdas berbasis web. Penelitian ini menggunakan metode analisis data mining SEMMA, yang meliputi tahapan-tahapan seperti data sampel, deskripsi data, transformasi data, pemodelan data, dan evaluasi data. 3.466 industri rumah tangga digunakan sebagai sampel data. Kinerja algoritma dievaluasi menggunakan pengukuran validitas klaster Davies Bouldin Index (DBI). Hasil eksperimen menunjukkan bahwa algoritma Dynamic cluster pada K-means memberikan nilai yang optimal pada iterasi ke lima, dengan perolehan sebagai berikut: klaster pemula (C1) diperoleh sebanyak 3214, kemudian klaster berkembang (C2) diperoleh sebanyak 167 dan klaster maju (C3) diperoleh sebanyak 85. Hasil evaluasi validitas klaster menunjukan bahwa algoritma Dynamic cluster pada Kmeans memperoleh nilai DBI lebih kecil dibandingkan dengan algoritma K-means dengan nilai DBI sebesar 0.184. Implementasi algoritma dynamic cluster pada K-means untuk pengelompokan data industri rumahan pada Dinas P3ACSKB di Provinsi Kepulauan Bangka Belitung terbukti menghasilkan kualitas cluster yang lebih optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信