Hui Guo, Zhicheng Ma, Han Zhang, Linlin Liu, Geng Wang, Yanqi Zhang, Xiuli Wang
{"title":"CSP可再生能源住宿调峰辅助服务市场模型","authors":"Hui Guo, Zhicheng Ma, Han Zhang, Linlin Liu, Geng Wang, Yanqi Zhang, Xiuli Wang","doi":"10.1109/ACPEE51499.2021.9436855","DOIUrl":null,"url":null,"abstract":"The integration of large-scale renewable energy sources requires a higher level of peak regulation capability in China Power Grid. A multi-energy complementary bilateral ancillary market model involving concentrating solar power (CSP), thermal, wind and photovoltaic is established. The model aims at maximizing the overall profits with energy saving and emission reduction, considers operation constraints of CSP with thermal energy storage system and provides a benefit evaluation method for CSP stations. Case study of a modified IEEE 30 system is conducted that separately demonstrates that CSP station can benefit from the ancillary market, the ancillary market promotes the accommodation of wind and photovoltaic, and other market participants can also obtain positive benefits and achieve win-win cooperation.","PeriodicalId":127882,"journal":{"name":"2021 6th Asia Conference on Power and Electrical Engineering (ACPEE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peak Shaving Ancillary Service Market Model of CSP for Renewable Energy Accommodation\",\"authors\":\"Hui Guo, Zhicheng Ma, Han Zhang, Linlin Liu, Geng Wang, Yanqi Zhang, Xiuli Wang\",\"doi\":\"10.1109/ACPEE51499.2021.9436855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of large-scale renewable energy sources requires a higher level of peak regulation capability in China Power Grid. A multi-energy complementary bilateral ancillary market model involving concentrating solar power (CSP), thermal, wind and photovoltaic is established. The model aims at maximizing the overall profits with energy saving and emission reduction, considers operation constraints of CSP with thermal energy storage system and provides a benefit evaluation method for CSP stations. Case study of a modified IEEE 30 system is conducted that separately demonstrates that CSP station can benefit from the ancillary market, the ancillary market promotes the accommodation of wind and photovoltaic, and other market participants can also obtain positive benefits and achieve win-win cooperation.\",\"PeriodicalId\":127882,\"journal\":{\"name\":\"2021 6th Asia Conference on Power and Electrical Engineering (ACPEE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th Asia Conference on Power and Electrical Engineering (ACPEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPEE51499.2021.9436855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th Asia Conference on Power and Electrical Engineering (ACPEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPEE51499.2021.9436855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Peak Shaving Ancillary Service Market Model of CSP for Renewable Energy Accommodation
The integration of large-scale renewable energy sources requires a higher level of peak regulation capability in China Power Grid. A multi-energy complementary bilateral ancillary market model involving concentrating solar power (CSP), thermal, wind and photovoltaic is established. The model aims at maximizing the overall profits with energy saving and emission reduction, considers operation constraints of CSP with thermal energy storage system and provides a benefit evaluation method for CSP stations. Case study of a modified IEEE 30 system is conducted that separately demonstrates that CSP station can benefit from the ancillary market, the ancillary market promotes the accommodation of wind and photovoltaic, and other market participants can also obtain positive benefits and achieve win-win cooperation.