随机森林薪酬预测系统提高学生学习动机

Pornthep Khongchai, Pokpong Songmuang
{"title":"随机森林薪酬预测系统提高学生学习动机","authors":"Pornthep Khongchai, Pokpong Songmuang","doi":"10.1109/SITIS.2016.106","DOIUrl":null,"url":null,"abstract":"A salary prediction model was generated for graduate students using a data mining technique to generate for individuals with similar training attributes. An experiment was also conducted to compare the two data mining techniques Decision Trees ID3, C4.5 and Random Forest to determine the most suitable technique for salary prediction, tuned with key important parameters to improve the accuracy of the results. Random Forest gave the best accuracy at 90.50%, while Decision Trees ID3 and C4.5 returned lower accuracies at 61.37% and 73.96%, respectively for 13,541 records of graduate students using a 10-fold cross-validation method. Random Forest generated the best efficiency model for salary prediction. A questionnaire survey was conducted to determine usage evaluation with 50 samples. Results indicated that the system was effective in boosting students' motivation for studying, and also gave them a positive future viewpoint. The results also suggested that the students were satisfied with the implemented system since it was easy to use, and the prediction results were simple to understand without any previous background statistical knowledge.","PeriodicalId":403704,"journal":{"name":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Random Forest for Salary Prediction System to Improve Students' Motivation\",\"authors\":\"Pornthep Khongchai, Pokpong Songmuang\",\"doi\":\"10.1109/SITIS.2016.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A salary prediction model was generated for graduate students using a data mining technique to generate for individuals with similar training attributes. An experiment was also conducted to compare the two data mining techniques Decision Trees ID3, C4.5 and Random Forest to determine the most suitable technique for salary prediction, tuned with key important parameters to improve the accuracy of the results. Random Forest gave the best accuracy at 90.50%, while Decision Trees ID3 and C4.5 returned lower accuracies at 61.37% and 73.96%, respectively for 13,541 records of graduate students using a 10-fold cross-validation method. Random Forest generated the best efficiency model for salary prediction. A questionnaire survey was conducted to determine usage evaluation with 50 samples. Results indicated that the system was effective in boosting students' motivation for studying, and also gave them a positive future viewpoint. The results also suggested that the students were satisfied with the implemented system since it was easy to use, and the prediction results were simple to understand without any previous background statistical knowledge.\",\"PeriodicalId\":403704,\"journal\":{\"name\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2016.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2016.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

使用数据挖掘技术生成具有相似训练属性的个人的研究生工资预测模型。实验还比较了两种数据挖掘技术决策树ID3、C4.5和随机森林,以确定最适合的工资预测技术,并对关键重要参数进行了调整,以提高结果的准确性。使用10倍交叉验证方法,随机森林的准确率最高,为90.50%,而决策树ID3和C4.5的准确率较低,分别为61.37%和73.96%,用于13,541条研究生记录。随机森林生成了工资预测的最佳效率模型。采用问卷调查法对50个样本进行使用评价。结果表明,该系统有效地提高了学生的学习动机,并使他们对未来有了积极的看法。结果还表明,学生对实施的系统感到满意,因为它易于使用,预测结果简单易懂,无需任何背景统计知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Forest for Salary Prediction System to Improve Students' Motivation
A salary prediction model was generated for graduate students using a data mining technique to generate for individuals with similar training attributes. An experiment was also conducted to compare the two data mining techniques Decision Trees ID3, C4.5 and Random Forest to determine the most suitable technique for salary prediction, tuned with key important parameters to improve the accuracy of the results. Random Forest gave the best accuracy at 90.50%, while Decision Trees ID3 and C4.5 returned lower accuracies at 61.37% and 73.96%, respectively for 13,541 records of graduate students using a 10-fold cross-validation method. Random Forest generated the best efficiency model for salary prediction. A questionnaire survey was conducted to determine usage evaluation with 50 samples. Results indicated that the system was effective in boosting students' motivation for studying, and also gave them a positive future viewpoint. The results also suggested that the students were satisfied with the implemented system since it was easy to use, and the prediction results were simple to understand without any previous background statistical knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信