点云编码:采用基于深度学习的方法

André F. R. Guarda, Nuno M. M. Rodrigues, F. Pereira
{"title":"点云编码:采用基于深度学习的方法","authors":"André F. R. Guarda, Nuno M. M. Rodrigues, F. Pereira","doi":"10.1109/PCS48520.2019.8954537","DOIUrl":null,"url":null,"abstract":"Point clouds have recently become an important visual representation format, especially for virtual and augmented reality applications, thus making point cloud coding a very hot research topic. Deep learning-based coding methods have recently emerged in the field of image coding with increasing success. These coding solutions take advantage of the ability of convolutional neural networks to extract adaptive features from the images to create a latent representation that can be efficiently coded. In this context, this paper extends the deep-learning coding approach to point cloud coding using an autoencoder network design. Performance results are very promising, showing improvements over the Point Cloud Library codec often taken as benchmark, thus suggesting a significant margin of evolution for this new point cloud coding paradigm.","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Point Cloud Coding: Adopting a Deep Learning-based Approach\",\"authors\":\"André F. R. Guarda, Nuno M. M. Rodrigues, F. Pereira\",\"doi\":\"10.1109/PCS48520.2019.8954537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point clouds have recently become an important visual representation format, especially for virtual and augmented reality applications, thus making point cloud coding a very hot research topic. Deep learning-based coding methods have recently emerged in the field of image coding with increasing success. These coding solutions take advantage of the ability of convolutional neural networks to extract adaptive features from the images to create a latent representation that can be efficiently coded. In this context, this paper extends the deep-learning coding approach to point cloud coding using an autoencoder network design. Performance results are very promising, showing improvements over the Point Cloud Library codec often taken as benchmark, thus suggesting a significant margin of evolution for this new point cloud coding paradigm.\",\"PeriodicalId\":237809,\"journal\":{\"name\":\"2019 Picture Coding Symposium (PCS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS48520.2019.8954537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

近年来,点云已经成为一种重要的可视化表示格式,特别是在虚拟现实和增强现实应用中,因此点云编码成为一个非常热门的研究课题。近年来,基于深度学习的编码方法在图像编码领域取得了越来越多的成功。这些编码解决方案利用了卷积神经网络从图像中提取自适应特征的能力,以创建可以有效编码的潜在表示。在此背景下,本文使用自编码器网络设计将深度学习编码方法扩展到点云编码。性能结果非常有希望,显示了对通常作为基准的点云库编解码器的改进,从而表明这种新的点云编码范式有很大的发展余地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Point Cloud Coding: Adopting a Deep Learning-based Approach
Point clouds have recently become an important visual representation format, especially for virtual and augmented reality applications, thus making point cloud coding a very hot research topic. Deep learning-based coding methods have recently emerged in the field of image coding with increasing success. These coding solutions take advantage of the ability of convolutional neural networks to extract adaptive features from the images to create a latent representation that can be efficiently coded. In this context, this paper extends the deep-learning coding approach to point cloud coding using an autoencoder network design. Performance results are very promising, showing improvements over the Point Cloud Library codec often taken as benchmark, thus suggesting a significant margin of evolution for this new point cloud coding paradigm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信