{"title":"MMBench:匹配基准","authors":"Yongsheng Liu, Yanxing Qi, Jiangwei Zhang, Connie Kou, Qiaolin Chen","doi":"10.1145/3539597.3573023","DOIUrl":null,"url":null,"abstract":"Video gaming has gained huge popularity over the last few decades. As reported, there are about 2.9 billion gamers globally. Among all genres, competitive games are one of the most popular ones. Matchmaking is a core problem for competitive games, which determines the player satisfaction, hence influences the game success. Most matchmaking systems group the queuing players into opposing teams with similar skill levels. The key challenge is to accurately rate the players' skills based on their match performances. There has been an increasing amount of effort on developing such rating systems such as Elo, Glicko. However, games with different game-plays might have different game modes, which might require an extensive amount of effort for rating system customization. Even though there are many rating system choices and various customization strategies, there is a clear lack of a systematic framework with which different rating systems can be analysed and compared against each other. Such a framework could help game developers to identify the bottlenecks of their matchmaking systems and enhance the performance of their matchmaking systems. To bridge the gap, we present MMBench, the first benchmark framework for evaluating different rating systems. It serves as a fair means of comparison for different rating systems and enables a deeper understanding of different rating systems. In this paper, we will present how MMBench could benchmark the three major rating systems, Elo, Glicko, Trueskill in the battle modes of 1 vs 1, n vs n, battle royal and teamed battle royal over both real and synthetic datasets.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MMBench: The Match Making Benchmark\",\"authors\":\"Yongsheng Liu, Yanxing Qi, Jiangwei Zhang, Connie Kou, Qiaolin Chen\",\"doi\":\"10.1145/3539597.3573023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video gaming has gained huge popularity over the last few decades. As reported, there are about 2.9 billion gamers globally. Among all genres, competitive games are one of the most popular ones. Matchmaking is a core problem for competitive games, which determines the player satisfaction, hence influences the game success. Most matchmaking systems group the queuing players into opposing teams with similar skill levels. The key challenge is to accurately rate the players' skills based on their match performances. There has been an increasing amount of effort on developing such rating systems such as Elo, Glicko. However, games with different game-plays might have different game modes, which might require an extensive amount of effort for rating system customization. Even though there are many rating system choices and various customization strategies, there is a clear lack of a systematic framework with which different rating systems can be analysed and compared against each other. Such a framework could help game developers to identify the bottlenecks of their matchmaking systems and enhance the performance of their matchmaking systems. To bridge the gap, we present MMBench, the first benchmark framework for evaluating different rating systems. It serves as a fair means of comparison for different rating systems and enables a deeper understanding of different rating systems. In this paper, we will present how MMBench could benchmark the three major rating systems, Elo, Glicko, Trueskill in the battle modes of 1 vs 1, n vs n, battle royal and teamed battle royal over both real and synthetic datasets.\",\"PeriodicalId\":227804,\"journal\":{\"name\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539597.3573023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3573023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Video gaming has gained huge popularity over the last few decades. As reported, there are about 2.9 billion gamers globally. Among all genres, competitive games are one of the most popular ones. Matchmaking is a core problem for competitive games, which determines the player satisfaction, hence influences the game success. Most matchmaking systems group the queuing players into opposing teams with similar skill levels. The key challenge is to accurately rate the players' skills based on their match performances. There has been an increasing amount of effort on developing such rating systems such as Elo, Glicko. However, games with different game-plays might have different game modes, which might require an extensive amount of effort for rating system customization. Even though there are many rating system choices and various customization strategies, there is a clear lack of a systematic framework with which different rating systems can be analysed and compared against each other. Such a framework could help game developers to identify the bottlenecks of their matchmaking systems and enhance the performance of their matchmaking systems. To bridge the gap, we present MMBench, the first benchmark framework for evaluating different rating systems. It serves as a fair means of comparison for different rating systems and enables a deeper understanding of different rating systems. In this paper, we will present how MMBench could benchmark the three major rating systems, Elo, Glicko, Trueskill in the battle modes of 1 vs 1, n vs n, battle royal and teamed battle royal over both real and synthetic datasets.