物理设计感知系统级综合硬件

Nasim Farahini, A. Hemani, Hasan Sohofi, Shuo Li
{"title":"物理设计感知系统级综合硬件","authors":"Nasim Farahini, A. Hemani, Hasan Sohofi, Shuo Li","doi":"10.1109/SAMOS.2015.7363669","DOIUrl":null,"url":null,"abstract":"In spite of decades of research, only a small percentage of hardware is designed using high-level synthesis because of the large gap between the abstraction levels of standard cells and algorithmic level. We propose a grid-based regular physical design platform composed of large grain hardened building blocks called SiLago blocks. This platform is divided into regions which are specialized for different functionalities like computation, storage, system control, etc. The characterized micro-architectural operations of the SiLago platform serve as the interface to meet-in-the-middle high-level and system-level syntheses framework. This framework was used to generate three hardware macro instances, derived from SiLago platform for three applications from signal processing domain. Results show two orders of magnitude improvements in efficiency of the system-level design space exploration and synthesis time, with average loss in design quality of 18% for energy and 54% for area compared to the commercial SOC flow.","PeriodicalId":346802,"journal":{"name":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"62 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Physical design aware system level synthesis of hardware\",\"authors\":\"Nasim Farahini, A. Hemani, Hasan Sohofi, Shuo Li\",\"doi\":\"10.1109/SAMOS.2015.7363669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In spite of decades of research, only a small percentage of hardware is designed using high-level synthesis because of the large gap between the abstraction levels of standard cells and algorithmic level. We propose a grid-based regular physical design platform composed of large grain hardened building blocks called SiLago blocks. This platform is divided into regions which are specialized for different functionalities like computation, storage, system control, etc. The characterized micro-architectural operations of the SiLago platform serve as the interface to meet-in-the-middle high-level and system-level syntheses framework. This framework was used to generate three hardware macro instances, derived from SiLago platform for three applications from signal processing domain. Results show two orders of magnitude improvements in efficiency of the system-level design space exploration and synthesis time, with average loss in design quality of 18% for energy and 54% for area compared to the commercial SOC flow.\",\"PeriodicalId\":346802,\"journal\":{\"name\":\"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)\",\"volume\":\"62 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMOS.2015.7363669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2015.7363669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

尽管经过了几十年的研究,但由于标准单元的抽象级别与算法级别之间的巨大差距,只有一小部分硬件是使用高级合成设计的。我们提出了一个基于网格的规则物理设计平台,该平台由称为SiLago块的大颗粒硬化构建块组成。该平台被划分为不同的功能区域,如计算、存储、系统控制等。SiLago平台特有的微体系结构操作充当了与中间的高级和系统级综合框架相遇的接口。该框架用于生成来自SiLago平台的三个硬件宏实例,用于信号处理领域的三个应用。结果表明,与商业SOC流程相比,系统级设计空间探索和综合时间的效率提高了两个数量级,能量和面积的平均设计质量损失分别为18%和54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical design aware system level synthesis of hardware
In spite of decades of research, only a small percentage of hardware is designed using high-level synthesis because of the large gap between the abstraction levels of standard cells and algorithmic level. We propose a grid-based regular physical design platform composed of large grain hardened building blocks called SiLago blocks. This platform is divided into regions which are specialized for different functionalities like computation, storage, system control, etc. The characterized micro-architectural operations of the SiLago platform serve as the interface to meet-in-the-middle high-level and system-level syntheses framework. This framework was used to generate three hardware macro instances, derived from SiLago platform for three applications from signal processing domain. Results show two orders of magnitude improvements in efficiency of the system-level design space exploration and synthesis time, with average loss in design quality of 18% for energy and 54% for area compared to the commercial SOC flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信